Spherical CaF2 and CaF2:Ln3+ (Ln = Eu, Tb, Ce/Tb) with tunable particle size (about 2.5 µm) have been synthesized by one-step facile and effective hydrothermal method. The spherical structure was highly uniform and well-dispersed. It was found that reaction time, pH value, and reaction temperature have important effects on the controlled synthesis of spherical CaF2. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), photo-luminescence (PL) and luminescence decay curve. Under UV excitation, the CaF2:Eu3+ showed the red emission (5D0→7FJ = 0, 1, 2, 3) and the CaF2:Tb3+ presented the green emission (5D4→7FJ = 6, 5, 4, 3), respectively. Furthermore, Ce3+/Tb3+ co-doped CaF2 showed efficient energy transfer from Ce3+ to Tb3+, which presented strong green photo-luminescence of Tb3+. Due to excellent luminescent properties, the obtained samples can be used in many fields, such as light display systems, optoelectronic devices and biological imaging.
Published in | International Journal of Materials Science and Applications (Volume 5, Issue 2) |
DOI | 10.11648/j.ijmsa.20160502.14 |
Page(s) | 54-60 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2016. Published by Science Publishing Group |
CaF2, Hydrothermal Synthesis, Ce→Tb Energy Transfer, Spherical, Luminescence Properties
[1] | H. H. Gorris, O. S. Wolfbeis, Photonen aufkonvertierende Nanopartikel zur optischen Codierung und zum Multiplexing von Zellen, Biomolekülen und Mikrosphären, Angew. Chem. 125 (2013) 3668-3686. |
[2] | A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, B. E. Cohen, Controlled Synthesis and Single-Particle Imaging of Bright, Sub-10nm Lanthanide-Doped Upconverting Nanocrystals., ACS. Nano. 6 (2012) 2686-2692. |
[3] | Y. S. Liu, D. T. Tu, H. M. Zhu, X. Y. Chen, Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem. Soc. Rev. 42 (2013) 6924-6958. |
[4] | F. Wang, X. G. Liu, Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals, Chem. Soc. Rev. 38 (2009) 976-989. |
[5] | X. Wang, J. Zhuang, Q. Peng, Y. D. Li, A general strategy for nanocrystal synthesis, Nature, 437 (2005 ) 121-124. |
[6] | R. Yan, Y. D. Li, Down/Up Conversion in Ln3+-Doped YF2 Nanocrystals, Adv. Funct. Mater. 15 (2005) 763-770. |
[7] | G. De, W. Qin, J. Zhang, J. Zhang, Y. Wang, C. Cao, Y. Cui, Synthesis and photol-uminescence of single crystals europiumion-doped BaF2 cubic nanorods, J. Solid State Chem. 179 (2006) 955-958. |
[8] | R. Singh, S. Sinha, P. Chou, N. J. Hsu, F. Radpour, Preparation of BaF2 films by metalorganic chemical vapor deposition, J. Appl. Phys. 66 (1989) 6179. |
[9] | L. L. Chase, Microwave-Optical Double Resonance of the Metastable 4f65d Level of Eu2+ in the Fluorite Lattices, Phys. ReV. B. 2 (1970) 2308. |
[10] | A. W. Hull, The Crystal Structure of Calcium, Phys. ReV. 17 (1921) 42. |
[11] | G. F. Wang, Q. Peng, Y. D. Li, Upconversion Luminescence of Monodisperse CaF2:Yb3+/Er3+ Nanocrystals, J. Am. Chem. Soc. 131 (2009) 14200-14201. |
[12] | W. S. Wang, L. Zhen, C. Y. Xu, J. Z. Chen, W. Z. Shao, Aqueous Solution Synthesis of CaF2 Hollow Microspheres via the Ostwald Ripening Process at Room Temperature, ACS Appl. Mater. Interfaces. 1 (2009) 780-788. |
[13] | N. S. Sokolov, S. M. Suturin, MBE-growth peculiarities of fluoride (CdF2-CaF2) thin film structures, Thin Solid Films, 367 (2000) 112-119. |
[14] | T. Pilvi, K. Arstila, M. Leskel, M. Ritala, Novel ALD Process for Depositing CaF2 Thin Films, Chem. Mater. 19 (2007) 3387-3392. |
[15] | M. H. Cao, C. W. Hu, E. B. Wang, The First Fluoride One-Dimensional Nanostructures: Microemulsion-Mediated Hydrothermal Synthesis of BaF2 Whiskers, J. Am. Chem. Soc. 125 (2003) 11196-11197. |
[16] | D. J. Norris, A. L. Efros, S. C. Erwin, Doped Nanocrystals, Science 319 (2008) 1776-1779. |
[17] | X. Feng, D. C. Sayle, Z. L. Wang, M. S. Paras, Converting Ceria Polyhedral Nanoparticles into Single-Crystal Nanospheres, Science 312 (2006) 1504-1508. |
[18] | D. Mocatta, G. Cohen, J. Schattner, O. Millo, E. Rabani, U. Banin Science 332 (2011) 48-49. |
[19] | J. H. Yu, S. H. Kwon, Z. Petrášk, O. K. Park, S. W. Jun, K. Shin, M. Choi, Y. I. Park, High-resolution three-photon bio-medical imaging using doped ZnS nanocrystals, Nat. Mater. 12 (2013) 359-366. |
[20] | Y. F. Yang, Y. Z. Jin, H. P. He, Q. L. Wang, Y. Tu, Dopant-Induced Shape Evolution of Colloidal Nanocrystals: The Case of Zinc Oxide, J. Am. Chem. Soc. 132 (2010) 13381-13394. |
[21] | Y. Ding, J. Gu, J. Ke, Y. W. Zhang, C. H. Yan, Sodium Doping Controlled Synthesis of Mono-disperse Lanthanide Oxysulfide Ultrathin Nanoplates Guided by Density Functional Calculations, Angew. Chem. Int. Ed. 50 (2011) 12330-12334. |
[22] | R. Buonsanti, D. J. Milliron, Chemistry of Doped Colloidal Nanocrystals, Chem. Mater. 25 (2013) 1305-1317. |
[23] | D. Q. Chen, Y. S. Wang, Impurity doping: a novel strategy for controllable synthesis of functional lanthanide nanomaterials, Nanoscale 5 (2013) 4621-4637. |
[24] | I. López, E. Nogales, B. Méndez, J. Piqueras, Influence of Sn and Cr Doping on Morphology and Luminescence of Thermally Grown Ga2O3 Nanowires, J. Phys. Chem. C. 117 (2013) 3036-3045. |
[25] | F. Wang, Y. Han, C. S. Lim, Y. H. Lu, J. Wang, Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping, Nature 463 (2010) 1061-1065. |
[26] | D. Q. Chen, Y. L. Yu, F. Huang, P. Huang, A. P. Yang, Y. S. Wang, Modifying the Size and Shape of Monodisperse Bifunctional Alkaline-Earth Fluoride Nanocrystals through Lanthanide Doping, J. Am. Chem. Soc. 132 (2010) 9976-9978. |
[27] | S. J. Zeng, G. Z. Ren, C. F. Xu, Q. B. Yang, Modifying crystal phase, shape, size, optical and magnetic properties of mono-dispersed multifunctional NaYbF4 nanocrystals through lanthanide doping, Cryst Eng Comm 13 (2011) 4276-4281. |
[28] | A. Lauria, I. Villa, M. Fasoli, M. Niederberger, A. Vedda, Multifunctional Role of Rare Earth Doping in Optical Materials: Nonaqueous SolGel Synthesis of Stabilized Cubic HfO2 Luminescent Nanoparticles, ACS Nano 7 (2013) 7041-7052. |
[29] | H. Na, K. Woo, K. Lim, H. S. Jang, Rational morphology control of b-NaYF4:Yb,Er/Tm upconversion nanophosphors using a ligand, an additive, and lanthanide doping., Nanoscale 5 (2013) 4242-4251. |
[30] | Z. L. Wang, Z. W. Quan, J. Lin, Remarkable Changes in the Optical Properties of CeO2 Nanocrystals Induced by Lanthanide Ions Doping, Inorg. Chem. 46 (2007) 5237-5242. |
[31] | H. L. Qiu, G. Y. Chen, R. W. Fan, C. Cheng, S. W. Hao, D. Y. Chen, C. H. Yang, Tuning the size and shape of colloidal cerium oxide nanocrystals through lanthanide doping, Chem. Commun. 47 (2011) 9648-9650. |
[32] | X. F. Yu, M. Li, M. Y. Xie, L. D. Chen, Y. Li, Q. Q. Wang, Dopant-Controlled Synthesis of Water-Soluble Hexagonal NaYF4 Nanorods with Efficient Upconversion Fluorescence for Multicolor Bioimaging, Nano Res. 3 (2010) 51-60. |
[33] | G. Chen, H. Qiu, P. N. Prasad, X. Chen, Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics., Chem. Rev.114 (2014) 5161-5214. |
[34] | F. Wang, X. P. Fan, D. B. Pi, M. Q. Wang, Synthesis and luminescence behavior of Eu3+-doped CaF2 nanoparticles, Solid State Commun. 133 (2005) 775. |
[35] | J. S. Wang, W. R. Miao, Y. X. Li, H. C. Yao, Z. J. Li, Water-soluble Ln3+-doped calcium fluoride nanocrystals: Controlled synthesis and luminescence properties, Mater. Lett. 63 (2009) 1794. |
[36] | A. Bensal, M. Mortier, G. Patriarche, P. Gredin, D. Vivien, Synthesis and optical chara-cterizations of undoped and rare-earth-doped CaF2 nanoparticles, J. Solid State Chem. 179 (2006) 2636. |
[37] | A. Jouini, A. Brenier, Y. Guyot, G. Boulon, H. Sato, A. Yoshikawa, K. Fukuda, T. Fukuda, Spectroscopic and Laser Properties of the Near-Infrared Tunable Laser Material Yb3+-Doped CaF2 Crystal, Cryst. Growth Des. 8 (2008) 808. |
[38] | X. M. Zhang, Z. W. Quan, J. Yang, P. P. Yang, H.Z. Lian, J. Lin, Solvothermal synthesis of well-dispersed MF2 (M = Ca, Sr, Ba) nanocrystals and their optical properties, Nanotechnology 19 (2008) 075603. |
[39] | C. M. Zhang, C. X. Li, C. Peng, R. T. Chai, S. S. Huang, D. M. Yang, Z. Y. Cheng, J. Lin, Facile and Controllable Synthesis of Mono-disperse CaF2 and CaF2:Ce3+/Tb3+ Hollow Spheres as Efficient Luminescent Materials and Smart Drug Carriers, Chem. Eur. J. 16 (2010) 5672-5680. |
[40] | S. Y. Hou, Y. C. Zou, X. C. Liu, X. D. Yu, B. Liu, X. J. Sun, Y. Xing, CaF2 and CaF2:Ln3+ (Ln= Er, Nd, Yb) hierarchical nanoflowers: hydrothermal synthesis and luminescent properties, CrystEng Comm, 13 (2011) 835-840. |
[41] | X. H. He, B. Yan, “One-Stone-Two-Birds” Modulation for Na3ScF6-Based Novel Nanocrystals: Simultaneous Morphology Evolution and Luminescence Tuning, Cryst. Growth Des. 14 (2014) 3257-3263. |
[42] | C. Y. Cao, H. K. Yang, J. W. Chung, B. K. Moon, Hydrothermal synthesis and optical properties of Eu3+ doped NaREF4 (RE = Y, Gd), LnF3 (Ln = Y, La), and YF3-1.5NH3 micro/nanocrystals, Mater Res Bull 46 (2011) 1553-1559. |
[43] | F. Tao, Z. J. Wang, L. Z. Yao, W. L. Cai, X. G. Li, Synthesis and Photoluminescence Properties of Truncated Octahedral Eu-Doped YF3 Submicrocrystals or Nanocrystals, J. Phys. Chem. C 111 (2007) 3241-3245. |
[44] | E. Bovero, F. C. J. M. van. Veggel, Conformational Characterization of Eu3+-Doped LaF3 Core-Shell Nanoparticles through Luminescence Anisotropy Studies, J. Phys. Chem. C. 111 (2007) 4529-4534. |
[45] | L. G. DeShazer, G. H. Dieke, Spectra and Energy Levels of Eu3+ in LaCl3, J. Chem. Phys. 38 (1963) 2190. |
APA Style
Xiaohong Yang, Jingjing Cao, Shanshan Hu. (2016). Hydrothermal Synthesis and Luminescence Properties of Monodisperse Spherical CaF2 and CaF2:Ln3+ (Ln = Eu, Tb, Ce/Tb) Microcrystals. International Journal of Materials Science and Applications, 5(2), 54-60. https://doi.org/10.11648/j.ijmsa.20160502.14
ACS Style
Xiaohong Yang; Jingjing Cao; Shanshan Hu. Hydrothermal Synthesis and Luminescence Properties of Monodisperse Spherical CaF2 and CaF2:Ln3+ (Ln = Eu, Tb, Ce/Tb) Microcrystals. Int. J. Mater. Sci. Appl. 2016, 5(2), 54-60. doi: 10.11648/j.ijmsa.20160502.14
AMA Style
Xiaohong Yang, Jingjing Cao, Shanshan Hu. Hydrothermal Synthesis and Luminescence Properties of Monodisperse Spherical CaF2 and CaF2:Ln3+ (Ln = Eu, Tb, Ce/Tb) Microcrystals. Int J Mater Sci Appl. 2016;5(2):54-60. doi: 10.11648/j.ijmsa.20160502.14
@article{10.11648/j.ijmsa.20160502.14, author = {Xiaohong Yang and Jingjing Cao and Shanshan Hu}, title = {Hydrothermal Synthesis and Luminescence Properties of Monodisperse Spherical CaF2 and CaF2:Ln3+ (Ln = Eu, Tb, Ce/Tb) Microcrystals}, journal = {International Journal of Materials Science and Applications}, volume = {5}, number = {2}, pages = {54-60}, doi = {10.11648/j.ijmsa.20160502.14}, url = {https://doi.org/10.11648/j.ijmsa.20160502.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmsa.20160502.14}, abstract = {Spherical CaF2 and CaF2:Ln3+ (Ln = Eu, Tb, Ce/Tb) with tunable particle size (about 2.5 µm) have been synthesized by one-step facile and effective hydrothermal method. The spherical structure was highly uniform and well-dispersed. It was found that reaction time, pH value, and reaction temperature have important effects on the controlled synthesis of spherical CaF2. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), photo-luminescence (PL) and luminescence decay curve. Under UV excitation, the CaF2:Eu3+ showed the red emission (5D0→7FJ = 0, 1, 2, 3) and the CaF2:Tb3+ presented the green emission (5D4→7FJ = 6, 5, 4, 3), respectively. Furthermore, Ce3+/Tb3+ co-doped CaF2 showed efficient energy transfer from Ce3+ to Tb3+, which presented strong green photo-luminescence of Tb3+. Due to excellent luminescent properties, the obtained samples can be used in many fields, such as light display systems, optoelectronic devices and biological imaging.}, year = {2016} }
TY - JOUR T1 - Hydrothermal Synthesis and Luminescence Properties of Monodisperse Spherical CaF2 and CaF2:Ln3+ (Ln = Eu, Tb, Ce/Tb) Microcrystals AU - Xiaohong Yang AU - Jingjing Cao AU - Shanshan Hu Y1 - 2016/04/09 PY - 2016 N1 - https://doi.org/10.11648/j.ijmsa.20160502.14 DO - 10.11648/j.ijmsa.20160502.14 T2 - International Journal of Materials Science and Applications JF - International Journal of Materials Science and Applications JO - International Journal of Materials Science and Applications SP - 54 EP - 60 PB - Science Publishing Group SN - 2327-2643 UR - https://doi.org/10.11648/j.ijmsa.20160502.14 AB - Spherical CaF2 and CaF2:Ln3+ (Ln = Eu, Tb, Ce/Tb) with tunable particle size (about 2.5 µm) have been synthesized by one-step facile and effective hydrothermal method. The spherical structure was highly uniform and well-dispersed. It was found that reaction time, pH value, and reaction temperature have important effects on the controlled synthesis of spherical CaF2. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), photo-luminescence (PL) and luminescence decay curve. Under UV excitation, the CaF2:Eu3+ showed the red emission (5D0→7FJ = 0, 1, 2, 3) and the CaF2:Tb3+ presented the green emission (5D4→7FJ = 6, 5, 4, 3), respectively. Furthermore, Ce3+/Tb3+ co-doped CaF2 showed efficient energy transfer from Ce3+ to Tb3+, which presented strong green photo-luminescence of Tb3+. Due to excellent luminescent properties, the obtained samples can be used in many fields, such as light display systems, optoelectronic devices and biological imaging. VL - 5 IS - 2 ER -