Rice is the most widely consumed staple crop in Africa and consumption continues to grow at a rapid pace with increasing population. Success in breeding programs are largely dependent on the genetic diversity of a crop. Genetic variability occurs due to genetic differences in individuals within a given population, which is the basis of plant breeding. Thus, if the genetic variability is well managed, diversity can result to permanent gains in the performance of the crop. The objectives of this study were to determine the interaction between grain yield and yield components and to conduct genetic studies on selected rice genotypes. The research was carried out at the University of Port Harcourt Faculty of Agriculture teaching and research farm. Thirteen (13) varieties were used which comprised 7 adapted Nigerian varieties and 6 Korean rice varieties in a randomized complete block design (RCBD) in three replications was established. All agronomic practices were carried out at appropriately crop phenology. North Carolina II mating design was used to perform crosses. Data was collected on 10 agronomic traits. All means were subjected to ANOVA, combining ability, Heterosis and Potence ratio were determined. The progenies from UPIA 2 x UPN 234, FARO 52 X UPN 266 and UPIA 3 X UPN 266 had the best phenotypic and genotypic expression and most of the hybrids had heterotic values than their parents. The results also showed ranges of dominance for genotypes. UPIA 1, UPIA 2, UPN 223, UPN 234 and UPN266 should be included in breeding programs because they showed the best GCA’s across most traits.
Published in | International Journal of Genetics and Genomics (Volume 12, Issue 3) |
DOI | 10.11648/j.ijgg.20241203.12 |
Page(s) | 54-67 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2024. Published by Science Publishing Group |
Combining Ability, Heterosis, Potence Ratio, Populations, Korean
S/NO | Variety | Origin/Source |
---|---|---|
1 | WBK 114 | Uniport Agra germplasm (Improved rice) |
2 | UPIA 1 | Uniport Agra germplasm (Improved rice) |
3 | UPIA 2 | Uniport Agra germplasm (Improved rice) |
4 | UPIA 3 | Uniport Agra germplasm (Improved rice) |
5 | FARO 52 | Uniport Agra germplasm (Improved rice) |
6 | FARO 57 | Uniport Agra germplasm (Improved rice) |
7 | FARO 61 | Uniport Agra germplasm (Improved rice) |
8 | UPN 223 | Double-haploid line from South Korea |
9 | UPN 266 | Double-haploid line from South Korea |
10 | UPN 250 | Double-haploid line from South Korea |
11 | UPN 234 | Double-haploid line from South Korea |
12 | UPN 257 | Double-haploid line from South Korea |
13 | UPN 268 | Double-haploid line from South Korea |
14 | FARO 52 X UPN 266 | Progeny |
15 | FARO 52 X UPN 223 | Progeny |
16 | FARO 52 X UPN 268 | Progeny |
17 | FARO 52 X UPN 257 | Progeny |
18 | FARO 61 X UPN 250 | Progeny |
19 | FARO 61 X UPN 234 | Progeny |
20 | UPIA 1 X UPN 250 | Progeny |
21 | UPIA 1 X UPN 266 | Progeny |
22 | UPIA 1 X UPN 234 | Progeny |
23 | UPIA 2 X UPN 266 | Progeny |
24 | UPIA 2 X UPN 234 | Progeny |
25 | UPIA 2 X UPN 257 | Hybrid generated from study |
26 | UPIA 3 X UPN 250 | Hybrid generated from study |
27 | UPIA 3 X UPN 266 | Hybrid generated from study |
28 | WBK 114 X UPN 25O | Hybrid generated from study |
Variety | PHT (cm) | LAI (cm2) | ET | PL (cm) | PW (g) |
---|---|---|---|---|---|
FARO52 X UPN266 | 99.15abcdef | 2.33ecd | 5bc | 25.85abcd | 1.04a |
FARO52 X UPN223 | 88.50cdedgh | 1.17jklm | 3def | 23.15bcde | 1.38a |
FARO52 X UPN268 | 100.75abcdef | 2.24cdef | 6ab | 25.03abcd | 1.25a |
FARO52 X UPN257 | 96.30abcdefg | 2.43cde | 2ef | 26.33adcd | 1.10a |
FARO61 X UPN250 | 78.50efgh | 1.18ijklm | 1f | 17.90e | 0.56a |
FARO61 X UPN234 | 84.50defgh | 0.55mn | 1f | 20.55de | 0.79a |
UPIA1 X UPN250 | 100.75abcdef | 3.68a | 3cdef | 28.00abc | 1.42a |
UPIA 1 X UPN266 | 91.20bcdefg | 3.19ab | 2 | 25.58abcd | 1.42a |
UPIA 1 X UPN234 | 75.50fgh | 1.33hijkl | 2ef | 24.75abcd | 1.27a |
UPIA 2 X UPN266 | 39.53i | 0.63lmn | 2f | 21.95cde | 1.34a |
UPIA 2 X UPN234 | 106.01abcd | 2.64bcd | 7a | 24.78abcd | 1.88a |
UPIA 2 X UPN257 | 91.90bcdefgh | 2.86bc | 2ef | 25.53adcd | 1.15a |
UPIA 3 X UPN250 | 84.40defgh | 1.06jklm | 1f | 20.28de | 2.53a |
UPIA 3 X UPN266 | 94.85bcdef | 2.27cdef | 4bcde | 26.55abcd | 1.81a |
WBK114 X UPN250 | 87.83cdefgh | 1.54fghij | 1f | 17.16e | 0.72a |
UPN 250 | 76.10fgh | 1.37ghijkl | 5bcd | 27.45abc | 1.24a |
UPN 266 | 99.75abcdef | 1.93defghi | 3cdef | 28.65ab | 2.57a |
UPN 223 | 67.40h | 0.75klm | 5bcd | 22.35bcde | 1.75a |
UPN 234 | 81.50defgh | 1.67efghij | 2f | 25.80bcde | 1.82a |
UPN 268 | 84.50defgh | 1.66efghij | 3def | 25.90abcd | 1.35a |
UPN 257 | 72.75fgh | 1.41ghijk | 2ef | 22.25bcde | 1.27a |
FARO 52 | 99.00abcdef | 2.13cdefg | 3def | 25.25abcd | 1.42a |
FARO 57 | 111.65abc | 2.11cdefg | 2ef | 23.30bcde | 1.38a |
FARO 61 | 115.5ab | 2.37cde | 1f | 27.40abc | 2.01a |
UPIA 1 | 102.5abcde | 2.53bcd | 2ef | 29.90a | 2.43a |
UPIA 2 | 97.00abcdefg | 2.02defg | 1f | 26.45abcd | 1.59a |
UPIA 3 | 121.00a | 2.05defg | 2ef | 22.50bcde | 0.97a |
WBK 114 | 86.65cdefgh | 1.50fghijk | 1f | 24.30abcd | 1.26a |
Mean | 88.04 | 1.61 | 2.67 | 24.02 | 1.27 |
S.E | 1.720 | 0.071 | 0.147 | 0.319 | 1.085 |
Variety | NOSPP | NOFSPP | %FS % | 1000SW (g) | YPP (g) |
---|---|---|---|---|---|
FARO52 X UPN266 | 108bcdefg | 47bcdef | 43.52efgh | 15.90cdefg | 2.14ab |
FARO52 X UPN223 | 85cdefghi | 59bcdef | 69.41bcd | 18.44bcdef | 5.83a |
FARO52 X UPN268 | 98bcdefgh | 60bcdef | 61.22cde | 18.30bcdef | 3.72a |
FARO52 X UPN257 | 97bcdefghi | 48bcdef | 49.48defg | 19.11bcdef | 1.39ab |
FARO61 X UPN250 | 45is | 20f | 44.44efgh | 8.02h | 0.42ab |
FARO61 X UPN234 | 46hi | 32def | 69.57bcd | 13.23efgh | 0.68ab |
UPIA1 X UPN250 | 86cdefghi | 51bcdef | 59.30def | 24.31abc | 2.85ab |
UPIA 1 X UPN266 | 74defghi | 41cdef | 55.41def | 23.40abcd | 1.94ab |
UPIA 1 X UPN234 | 59fghi | 46bcdef | 77.97a | 24.81ab | 1.69ab |
UPIA 2 X UPN266 | 97bcdefghi | 61bcdef | 62.89cde | 18.50bcdef | ‘1.12ab |
UPIA 2 X UPN234 | 135abcde | 85abc | 62.96cde | 17.85bcdefg | 4.97a |
UPIA 2 X UPN257 | 118abcde | 47bcdef | 39.83efghi | 16.4bcde | 1.02ab |
UPIA 3 X UPN250 | 58fghi | 40cdef | 68.97bcd | 14.21defgh | 0.71ab |
UPIA 3 X UPN266 | 126abcd | 90ab | 71.43ab | 18.53bcdef | 4.28ab |
WBK114 X UPN250 | 56ghi | 23ef | 41.07efgh | 10.07gh | 0.50ab |
UPN 250 | 85cdefghi | 50bcdef | 58.82def | 21.41adcde | 2.91ab |
UPN 266 | 144ab | 106a | 73.61ab | 21.91abcd | 5.72a |
UPN 223 | 92c0defghi | 67abcde | 72.83ab | 24.10abc | 3.32a |
UPN 234 | 105bcdefg | 77abcd | 73.33ab | 24.62ab | 1.67ab |
UPN 268 | 85cdefghi | 59bcdef | 69.41bcd | 20.31abcdef | 1.88ab |
UPN 257 | 71efghi | 54bcdef | 76.06a | 21.21abcde | 1.76ab |
FARO 52 | 121abcde | 59bcdef | 48.76efgh | 20.62abcde | 2.51ab |
FARO 57 | 107bcdefg | 56bcdef | 52.34defg | 21.63abcd | 2.31ab |
FARO 61 | 88cdefghi | 66abcdef | 75.00a | 19.51bcdef | 1.81ab |
UPIA 1 | 109bcdef | 80abc | 73.39ab | 28.12a | 4.15a |
UPIA 2 | 160a | 63abcdef | 39.38efghi | 21.41abcde | 1.49ab |
UPIA 3 | 77defghi | 30ef | 38.96efghi | 12.31fgh | 1.87ab |
WBK 114 | 81defghi | 40cdef | 49.38efgh | 17.81bcdefg | 1.25ab |
Mean | 90.34 | 56.69 | 59.96 | 18.81 | 3.69 |
S.E | 2.748 | 2.179 | 1.726 | 0.438 | 1.476 |
Source of variation | Mean Sum of Squares | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Df | PHT (cm) | FLAI (cm2) | ET | LP (cm) | WP (g) | NOSPP | NOFSPP | 1000 SW (g) | YPP (g) | |
Male parents | 5 | 255.71** | 0.33** | 3.20** | 13.76** | 0.51** | 1266.08** | 855.33** | 1.22ns | 4.82** |
Female parents | 6 | 284.34** | 0.21** | 0.78ns | 13.06** | 0.48** | 1651.81** | 553.00ns | 44.35** | 1.81ns |
Male x Female | 16 | 2729.33* | 4.50* | 16.88* | 222.48* | 1.03* | 5524.53* | 2155.42* | 186.49* | 568.54* |
Error | 106 | 142.88ns | 0.14ns | 1.14ns | 9.04ns | 0.21ns | 587.17ns | 466.23ns | 15.19ns | 342.84ns |
GCA male (δ2m) | -178.83* | -0.29* | -0.98* | -14.91* | -0.04* | -304.18* | -92.86* | -13.23* | -40.27* | |
GCA female (δ2f) | -203.75* | -0.36* | -1.34* | -17.45* | -0.05* | -332.73* | -133.54* | -11.85* | -47.23* | |
SCA (δ2fm) | 1293.23* | 2.18* | 7.87* | 106.72* | 0.41* | 2468.68* | 844.59* | 85.65* | 121.85* | |
Replication | 1 |
GCA | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
PHT (cm) | LAI (cm2) | ET | PL (cm) | PW(g) | NOSPP | NOFSPP | %FS (%) | 1000 SW (g) | YPP (g) | |
Males | ||||||||||
UPN 266 | -6.81** | 0.17** | 0.45** | 1.42* | 0.09ns | 15.38** | 9.75** | -0.87ns | 1.67* | 0.15ns |
UPN 223 | 0.52ns | 0.77** | 0.20ns | -0.41ns | 0.07ns | -0.87ns | 9.00** | 10.91** | 1.03* | 3.61* |
UPN 268 | 12.77** | 0.30** | 3.20* | 1.47* | -0.06ns | 12.13** | 10.00** | 2.72* | 1.70* | 1.50* |
UPN 257 | 6.12** | 0.71** | -0.80** | -2.37* | -0.19** | 21.63** | -2.50* | -13.85** | 0.35ns | -0.97ns |
UPN 250 | -0.11ns | -0.08ns | -1.30* | -2.73* | 0.19** | -24.62** | -16.50** | -5.12** | -3.26* | -1.10* |
UPN 234 | 0.69ns | 0.32** | 0.53** | 11.48** | 0.01ns | -5.87** | 4.30* | 11.67** | 1.22* | 0.29ns |
Females | ||||||||||
FARO 52 | 8.27** | 0.10ns | 1.20* | 1.53* | -0.12** | 11.3** | 3.50* | -2.59* | 0.53ns | 1.05* |
FARO 61 | -6.48** | -1.08* | -1.80* | -4.34** | -0.64** | -40.37** | -24.00** | -1.49* | -6.79** | -1.67* |
UPIA 1 | 1.17* | 0.79** | -0.47** | 2.55** | 0.06ns | -12.87** | -4.00* | 5.72** | 6.76** | -0.01ns |
UPIA 2 | -8.83** | 0.10ns | 2.53* | 0.50ns | 0.15** | 30.80** | 14.33** | -3.27* | 0.17ns | 0.15ns |
UPIA 3 | 1.65* | -0.28** | -0.30ns | -0.14ns | 0.86** | 6.13** | 15.00** | 11.57** | 1.96* | 0.28ns |
WBK 114 | -0.15ns | -0.40** | -1.80* | -6.40** | -0.59** | -29.87** | -27.00** | -17.43** | -7.34** | -1.72* |
MEAN | 0.73 | 0.11 | 0.14 | 0.21 | -0.01 | -1.43 | -0.68 | -0.17 | -0.17 | 0.13 |
SE | 1.74 | 0.15 | 0.44 | 1.23 | 0.11 | 6.01 | 4.02 | 2.59 | 1.08 | 0.41 |
Crosses | SCA | ||||
---|---|---|---|---|---|
PHT (cm) | LAI (cm2) | ET | PL (cm) | PW (g) | |
FARO 52 X UPN 266 | 1.71* | 0.12ns | 0.55** | -0.66ns | -1.05* |
FARO 52 X UPN 223 | -8.27** | -0.38ns | -1.2* | -1.53* | 0.12** |
FARO 52 X UPN 268 | -8.27** | -1.17* | -1.2* | -1.53* | 0.12** |
FARO 52 X UPN 257 | 6.07** | -0.51** | -1.2* | -1.13* | 0.10** |
FARO 61 X UPN 250 | -2.89* | -0.08** | 1.3* | 1.41* | -0.30** |
FARO 61 X UPN 234 | 2.51* | -0.63** | -0.53** | 10.15** | 0.12** |
UPIA 1 X UPN 250 | 11.71** | 0.78** | 1.97* | 4.62* | -0.14** |
UPIA 1 X UPN 266 | 8.86** | 0.29ns | -0.78** | -1.95* | -0.04** |
UPIA 1 X UPN 234 | -12.96** | -1.72* | -0.86** | -12.84** | -0.10** |
UPIA 2 X UPN 266 | -32.81** | -1.58* | -3.78* | -3.53* | -0.21** |
UPIA 2 X UPN 234 | 26.17** | 0.28** | -1.22* | -10.76** | 0.42** |
UPIA 2 X UPN 257 | 6.63** | 0.11ns | -3.86* | -0.90ns | -0.47** |
UPIA 3 X UPN 250 | -5.12** | -0.68** | -0.2ns | -0.41ns | 0.17** |
UPIA 3 X UPN 266 | 6.91** | 0.44** | 1.95* | 1.71* | -0.45** |
WBK 114 X UPN 25O | 0.11ns | -0.08ns | 1.3* | 2.73* | -0.16** |
MEAN | 0.02 | -0.32 | -0.52 | -0.97 | -0.12 |
SE | 3.30 | 0.19 | 0.44 | 1.38 | 0.08 |
Crosses | SCA | ||||
---|---|---|---|---|---|
NOSPP | NOFSPP | %FS (%) | 1000 SW (g) | YPP (g) | |
FARO 52 X UPN 266 | -4.38* | -16.25** | -11.52** | -3.71* | -1.28* |
FARO 52 X UPN 223 | -11.13** | -3.5* | 2.59* | -0.53** | -1.05* |
FARO 52 X UPN 268 | -11.13** | -3.5* | 2.59* | -1.34* | -1.05* |
FARO 52 X UPN 257 | -21.63** | -3.0* | 7.42** | 0.82** | -2.85* |
FARO 61 X UPN 250 | 22.99** | 10.5** | -7.45** | 0.66** | 0.97* |
FARO 61 X UPN 234 | 6.37** | 1.7* | 0.89* | 1.39* | -0.16** |
UPIA 1 X UPN 250 | -11.62** | 21.5** | 0.20ns | 3.40* | 1.73* |
UPIA 1 X UPN 266 | -12.38** | -14.75** | 7.94** | -2.42* | -0.43** |
UPIA 1 X UPN 234 | -8.13** | -4.3* | 2.08* | -0.58** | -0.62** |
UPIA 2 X UPN 266 | -35.05** | -13.08** | 8.53** | -0.75** | -1.4* |
UPIA 2 X UPN 234 | 24.2** | 16.37** | -3.94* | 1.2* | 2.31* |
UPIA 2 X UPN 257 | -20.3** | 14.83** | -1.55* | -2.38* | -0.38** |
UPIA 3 X UPN 250 | -9.38** | -8.5** | 18.6** | -1.9* | -0.66** |
UPIA 3 X UPN 266 | 18.62** | 9.75** | 1.93* | -2.51* | 1.63* |
WBK 114 X UPN 25O | 25.42** | 16.5** | 5.12** | 3.26* | 1.1* |
MEAN | -3.17 | 1.62 | 2.23 | -0.36 | -0.14 |
SE | 4.63 | 3.10 | 1.79 | 0.53 | 0.35 |
Crosses | HETEROSIS VALURS IN % | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PHT (cm) | LAI (cm2) | ET | PL (cm) | PW (g) | NOSPP | NOFSPP | %FS (%) | 1000 SW (g) | YPP (g) | ||
FARO 52 X UPN 266 | MPH | -0.23 | 14.5 | 81.82 | -3.99 | -47.67 | -18.10 | 42.86 | -19.09 | -24.89 | -47.96 |
BPH | -0.60 | 9.39 | 66.67 | -9.77 | -59.53 | -24.61 | -55.66 | -26.01 | -25.97 | -62.37 | |
FARO 52 X UPN 257 | MPH | 12.14 | 37.29 | -25 | 10.86 | -18.51 | 1.04 | -15.04 | -20.72 | -8.65 | -35.05 |
BPH | -2.73 | 14.08 | -10.00 | 2.05 | -39.56 | -19.71 | -37.25 | -34.95 | -22.36 | -44.62 | |
FARO52 X UPN 268 | MPH | 9.80 | 12.93 | 100 | -2.05 | -12.78 | -5.1 | 2.55 | 3.61 | 10.51 | 72.75 |
BPH | 1.77 | 5.16 | 120.00 | -3.36 | -11.97 | -18.88 | 2.55 | -11.80 | -11.17 | 48.21 | |
FARO 52 X UPN 223 | MPH | 6.37 | -18.75 | -66.67 | -2.61 | -19.92 | -12.61 | -17.51 | 14.51 | -5.68 | 100.00 |
BPH | -10.61 | -45.07 | -44.44 | -8.31 | -21.59 | -29.23 | -11.97 | -4.70 | -23.49 | 75.60 | |
UPIA 2 X UPN 234 | MPH | 18.77 | 43.24 | 480.00 | -5.17 | 10.26 | 1.70 | 22.30 | 11.72 | -22.39 | 214.54 |
BPH | 9.28 | 31.19 | 383.33 | 6.31 | 3.30 | -16.04 | 11.11 | -14.14 | -27.44 | 197.60 | |
UPIA 2 X UPN 257 | MPH | 8.28 | 66.56 | 50 | 0.048 | -19.58 | 1.29 | -19.83 | -30.99 | -23.72 | -36.45 |
BPH | -5.26 | 41.58 | 50.00 | -3.48 | -27.67 | -26.79 | -25.6 | -47.65 | -23.36 | -40.70 | |
UPIA 2 X UPN266 | MPH | -59.83 | -68.18 | -25 | -20.31 | -35.58 | -36.51 | -28.19 | 11.32 | -14.55 | -52.29 |
BPH | -60.38 | -68.81 | -50.00 | -23.39 | -47.86 | -39.88 | -42.94 | -14.94 | 15.53 | 73.43 | |
UPIA 1 X UPN 250 | MPH | 12.89 | 88.72 | 30.77 | 2.35 | -22.75 | -11.08 | -21.62 | -10.29 | -1.62 | -19.26 |
BPH | -1.71 | 45.45 | -27.78 | -6.35 | -41.56 | -20.87 | -36.1 | -19.20 | -13.21 | -31.33 | |
UPIA 1 X UPN 234 | MPH | -17.93 | 36.67 | 14.29 | -11.13 | -40.47 | -44.96 | -41.67 | 11.32 | 5.64 | -41.75 |
BPH | -26.34 | -47.43 | 0 | -17.22 | -47.74 | -46.10 | -42.77 | 6.24 | -11.43 | -59.04 | |
UPIA 1 X UPN 266 | MPH | -9.81 | 42.91 | 10 | 12.64 | -43.25 | -41.17 | 55.53 | -16.18 | -5.26 | 66.67 |
BPH | -11.02 | 0.26 | -25 | -14.75 | -44.75 | -48.20 | -61.80 | -24.50 | -16.43 | -53.25 | |
FARO 61 X UPN 234 | MPH | -12.44 | -72.76 | -20.00 | -22.74 | -58.49 | -43.38 | -55.79 | -6.20 | -40.14 | -61.20 |
BPH | -24.22 | -76.79 | -33.33 | -25.00 | -60.45 | -58.98 | -55.98 | -7.24 | -46.34 | -62.71 | |
FARO 61 X UPN 250 | MPH | -16.27 | -36.9 | -63.64 | -37.73 | -65.54 | -47.98 | -65.52 | -33.58 | -60.88 | -83.05 |
BPH | -29.60 | -50.63 | -77.78 | -34.79 | -72.14 | -48.86 | -69.70 | -40.75 | -62.61 | -86.25 | |
UPIA 3 X UPN 250 | MPH | -14.31 | -38.60 | -69.23 | -18.82 | -18.07 | -28.05 | 0.63 | 41.07 | -16.91 | -70.65 |
BPH | -30.25 | 48.78 | -77.78 | -26.12 | 104.03 | -31.44 | -20.58 | 17.27 | -34.58 | -75.86 | |
UPIA 3 X UPN 266 | MPH | -13.18 | 13.78 | 70 | 3.81 | -2.69 | 14.51 | 32.10 | 26.91 | 8.19 | 11.46 |
BPH | -21.61 | 10.73 | 41.67 | -7.33 | -29.57 | -12.02 | -15.57 | -2.96 | -15.53 | -26.05 | |
WBK 114 X UPN 250 | MPH | 7.99 | 7.32 | -15.61 | -32.57 | -42.4 | -32.73 | -48.22 | -24.09 | -48.62 | -75.96 |
BPH | 1.36 | 2.67 | -27.01 | -37.49 | -42.86 | -33.12 | -53.4 | -30.18 | -52.94 | -82.82 |
Crosses | TRAITS | ||||||||
---|---|---|---|---|---|---|---|---|---|
PHT (cm) | LAI (cm2) | ET | PL (cm) | PW (g) | NOSPP | NOFSPP | %FS (%) | 1000 SW (g) | |
FARO 52 X UPN 266 | -0.9 | 3.07 | 3 | 1.12 | 1.66 | -2.09 | -1.48 | -8.23 | -1.23 |
UPIA 2 X UPN 234 | 2.16 | 3.52 | 24 | -4.16 | 0.30 | -3.7 | 2.22 | -3.22 | -6.07 |
UPIA 1 X UPN 250 | 0.87 | 2.99 | 0 | -0.55 | -0.70 | -0.89 | 0.95 | -0.42 | -1.09 |
FARO 61 X UPN 234 | -0.82 | -5.79 | -1 | -2.02 | 11.76 | -6.09 | -7.57 | -3.47 | -15.21 |
UPIA 3 X UPN 250 | -0.62 | -1.92 | -1.8 | -1.89 | 10.96 | -568 | -0.02 | -5.29 | -3.21 |
FARO 61 X UPN 250 | -0.87 | -1.38 | 0 | -3.81 | -2.76 | -27.67 | -4.75 | -3.47 | -3.58 |
WBK 114 X UPN 250 | 1.22 | 1.68 | -1.1 | -5.73 | 83.87 | -10.9 | -4.33 | -5.29 | -1.9 |
FARO 52 X UPN 257 | 0.79 | 1.81 | 0 | 1.76 | 3.26 | -0.03 | -3.2 | -6 | -1.53 |
UPIA 1 X UPN 266 | 7.22 | 3.24 | 0.5 | -5.92 | -16.15 | -3.017 | -3.77 | -0.51 | -3.83 |
UPIA 2 X UPN 257 | 0.58 | 3.72 | 1.5 | 0.58 | -1.80 | 0.034 | -2.56 | -49 | -5.04 |
UPIA 2 X UPN266 | 42.8 | 31.53 | -0.5 | -5.09 | -1.51 | -6.53 | -1.09 | -12.6 | -1.17 |
FARO52 X UPN 268 | 1.24 | 0.97 | 3 | -1.5 | -3.67 | -0.3 | -1.08 | -14.33 | 4.82 |
UPIA 1 X UPN 234 | -1.94 | -2.43 | 1 | 1.52 | -2.82 | -21.97 | 21.67 | -0.88 | 0.98 |
UPIA 3 X UPN 266 | -1.46 | 11.99 | 3.5 | 0.32 | 0.05 | 0.48 | 0.57 | 0.47 | 0.26 |
FARO 52 X UPN 223 | 0.3 | -0.39 | 0.5 | 0.44 | 1.92 | 1.516 | -0.80 | -2.24 | 7.20 |
[1] | Zhao, L., Wu, L., Wu, M., & Li, Y. (2011). Nutrient uptake and water use efficiency as affected by modified rice cultivation methods with reduced irrigation. Paddy and Water Environment, 9(1), 25–32. |
[2] | Sprague, G. F. and Tatum, L. A. 1942. General vs specific combining ability in single crosses of corn. J.American Soc. Agron., 34: 923–932. |
[3] | Veeresha, B. A., Hanamaratti, N. G., & Salimath, P. M. (2015). Heterosis and combining ability studies for yield and productivity traits in rice: A Review. International Journal of Current Agricultural Research, 4(5),120-126. |
[4] | Dar, S., Rather, A. G., Ahanger, M. A., Sofi, N. R., & Talib, S. (2014). Gene action and combining ability studies for yield and component traits in rice (Oryza sativa L.): A review. Journal of Plant and Pest Science, 1(3), 110-127. |
[5] | Hochholdinger, F., and Hoecker, N. (2007). Towards the molecular basis of heterosis. Trends Plant Sci. 12, 427–432. |
[6] | Rajendrakumar P., Hariprasanna K., Seetharama N. Prediction of Heterosis in Crop Plants—Status and Prospects. Am. J. Exp. Agric. 2015; 9: 1–16. |
[7] | Mulualem T., Abate M. Heterotic Response in Major Cereals and Vegetable Crops. Int. J. Plant. Breed. Genet. 2016; 10: 69–78. |
[8] | Zhou G., Chen Y., Yao W., Zhang C., Xie W., Hua J., Xing Y., Xiao J., Zhang Q. Genetic composition of yield heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. USA. 2012; 109: 15847–15852. |
[9] | El-Badawy MEIM, 2012. Estimation of genetic parameters in three maize crosses for yield and its attributes. Asian Journal of Crop Sci. 4(4): 127-138. |
[10] | Alhadi RAA, Hadid ML, AL Ahmad SA, 2013. Potence Ratio and Path Analysis for Yield and Quality Traits in Single Crosses of Maize (Zea mays L.) Produced in Syria. Jordan J. Agri. Sci. 9(2): 153-161. |
[11] | IRRI (International Rice Research Institute). (2013). Standard Evaluation System (SES) for Rice (5th ed.). Los Banos. |
[12] | Yoshida S (1981) Fundamentals of rice crop science. International Rice Research Institute, Los Ban˜os, Philippines, p 269. |
[13] | SAS Institute Inc. 2003. SAS/STAT user’s guide, version 9.1. Cary, NC: SAS Institute Inc. |
[14] | Comstock, R. E. and Robinson H. F. 1948. The components of genetic variance in the populations of biparental progenies and their use in eliminating the average degree degree of dominance. Biometrics 4(4): 254-266. |
[15] | Wolf, D. P., L.A. Peternelli, and A R. Hallauer. 2000. Estimates of genetic variance in an F2 maize population. J. Heredity 91(5): 384–391. |
[16] | Virmani, S. S., Viraktamath, B. C., Casal, C. L., Toledo, R. S., Lopez, M. T., & Manalo, J. O. (1997). Hybrid rice breeding manual (p. 4). Los Banos, Philippines |
[17] | Mather K, 1949. Biometrical Genetics. Dover Press, New York |
[18] | Smith, H. H. (1952). Fixing transgressive vigor in JVicotiana rustica. In Heterosis, pp. 161-174, edited by Gowen, J. W., Iowa State College Press, Ames. |
[19] | Saidaiah P. 2010. Combining Ability Studies for Development of New Hybrids in Rice over Environments |
[20] | Singh, R.V., Maurya, D.M., Dwivedi, J.L. & Verma, O.P. (2005). Combining ability studies on yield and its components using CMS lines in rice (Oryza sativa L.). Oryza, 42, 306-309. |
[21] | Dalvi, V.V. & Patel, D.V. (2009). Combining ability anlysis for yield in hybrid rice. Oryza, 46(2), 97-102. |
[22] | Zhao, Q. Y., Zhu, Z., Zhang, Y., Zhao, L., Zhang, Q., Xu, L. and Wang, C., 2008, Combining ability and Heterosis of quality characters in japonica hybrid rice. Jiangsu J. Agril. Sci., 24(4): 387-393. |
[23] | Rahimi, M., Rabiei, B., Samizadeh, H. and Kafighasemi, A., 2010, combining ability and heterosis in rice (Oryza sativa L.) cultivars. J. Agri. Sci. Tech., 12: 223-231. |
[24] | Swamy, M. H., Gururaja Rao, M. R. and Vidyachandra, B., 2003. Studies on combining ability in rice hybrids involving new CMS lines. Karnataka J. Agril. Sci., 16(2): 228-233. |
[25] | Franco, M. C., Cassini, S. T., Oliveira, V. R., Vieira, C., Tsai, S. M., & Cruz, C. D. (2001). Combining ability for nodulation in common bean (Phaseolus vulgaris L.) genotypes from Andean and Middle American gene pools. Euphytica, 118(3), 265-270. |
[26] | Sharma, D., Sanghera, G. S., Sahu, P., Sahu, P., Parikh, M., Sharma, B., ... & Jena, B. K. (2013). Tailoring rice plants for sustainable yield through ideotype breeding and physiological interventions. African Journal of Agricultural Research, 8(40), 5004-5019. |
[27] | Pradeep-Kumar, V. and Reddy, C. V. C. M., 2011, Study of specific combining ability for yield characters in hybrid rice Plant Archives, 11(1): 449-452. |
[28] | Pradhan, S. K., Lotan Kumar, B. and Jitendriya, M., 2006, Studies on gene action and combining ability analysis in basmati rice. J. Cent. Eur. Agric., 7(2): 267-272. |
[29] | Allahgholipour, M. and Ali, A. J. (2006). Gene action and combining ability for grain yield and its components in rice. Journal of Sustainable Agriculture. 28: 39-53. |
[30] | Can, N. D., Nakamura, S. and Yoshida, T. (1997). Combining ability and genotype × environment interaction in early maturity grain sorghum for summer seeding. Japanese Journal of Crop Science. 66: 698-705. |
[31] | Moon, H. P. Heu, M. H. and Kim, C. H. (1994). Hybrid rice research in the Republic of Korea. In. Virmani S. S. (Ed.) Hybrid Rice Technology: new developments and future prospects. International Rice Research Institute, Manila, Philippines. P: 217-226. |
[32] | Gravois, K. A. and McNew, R. W. (1993). Combining ability and heterosis in U.S. southern long-grain rice. Crop Science. 33: 83-86. |
[33] | Siddiq, E. A. Jachuck, P. J. Mahadevappa, M. Zaman, F. U. Vijayakumar, R. Vidhyachandra, B. Sidhu, G. S. Kumar, I. Prasad, M. N. Rangaswamy, M. Pandey, M. P. Panwar, D. V. S. and Ahmed, I. (1994). Hybrid rice research in India. In Virmani S. S. (Ed.) Hybrid Rice Technology: new developments and future prospects. International Rice Research Institute, Manila, Philippines. P: 157-171. |
[34] | Exonam Amegan, Andrew Efisue, Malachy Akoroda, Afeez Shittu, Fiot Tonegnikes (2020). Genetic Diversity of Korean Rice (Oryza Sativa L.) Germplasm for Yield and Yield Related Traits for Adoption in Rice Farming System in Nigeria. International Journal of Genetics and Genomics. Vol. 8, No. 1, 2020, pp. 19-28. |
[35] | Saleem, M. Y. (2008). Genetic analysis of basmati rice (Oryza sativa L.) (Doctoral dissertation, Bahauddin Zakariya University, Multan, Pakistan. |
[36] | Vanaja, T., & Babu, L. C. (2004). Heterosis for yield and yield components in rice (Oryza sativa L.). Journal of Tropical Agriculture, 42(1), 43-44. |
[37] | Patil, P. P., Vashi, R. D., Shinde, D. A. and Lodam, V. A. 2011. Nature and magnitude of heterosis for grain yield and yield attributing traits in rice (Oryza sativa L.) Plant Archives, 11(1): 423-427. |
[38] | Tiwari, D. K., Pandey, P., Giri, S. P., & Dwivedi, L. J. (2011). Heterosis studies for yield and its components in rice hybrids using CMS system. Asian Journal of Plant Science, 10(1), 29-42. |
[39] | Flint-Garcia SA, Buckler ES, Tiffin P, Ersoz E, Springer NM, 2009. Heterosis is prevalent for multiple traits in diverse maize germplasm. PLoS ONE 4(10): e7433. |
[40] | Kumar, N. S., & Mudhalvan, S. (2018). Genetic analysis in rice (orzya sativa) for grain yield and its component characters. Plant Archives, 18(2), 1447-1450. |
[41] | Allah, A. A. (2009). Genetic studies on leaf rolling and some root traits under drought conditions in rice (Oryza sativa L.). African Journal of Biotechnology, 8(22). |
APA Style
Somtochukwu, O. C., Abiodun, E. A. (2024). Combining Ability, Heterosis and Potence Ratio for Yield and Yield Components in Korean Double-Haploid, Progenies and Improved Rice Varieties in Nigeria. International Journal of Genetics and Genomics, 12(3), 54-67. https://doi.org/10.11648/j.ijgg.20241203.12
ACS Style
Somtochukwu, O. C.; Abiodun, E. A. Combining Ability, Heterosis and Potence Ratio for Yield and Yield Components in Korean Double-Haploid, Progenies and Improved Rice Varieties in Nigeria. Int. J. Genet. Genomics 2024, 12(3), 54-67. doi: 10.11648/j.ijgg.20241203.12
AMA Style
Somtochukwu OC, Abiodun EA. Combining Ability, Heterosis and Potence Ratio for Yield and Yield Components in Korean Double-Haploid, Progenies and Improved Rice Varieties in Nigeria. Int J Genet Genomics. 2024;12(3):54-67. doi: 10.11648/j.ijgg.20241203.12
@article{10.11648/j.ijgg.20241203.12, author = {Ogba Chinonyelum Somtochukwu and Efisue Andrew Abiodun}, title = {Combining Ability, Heterosis and Potence Ratio for Yield and Yield Components in Korean Double-Haploid, Progenies and Improved Rice Varieties in Nigeria }, journal = {International Journal of Genetics and Genomics}, volume = {12}, number = {3}, pages = {54-67}, doi = {10.11648/j.ijgg.20241203.12}, url = {https://doi.org/10.11648/j.ijgg.20241203.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijgg.20241203.12}, abstract = {Rice is the most widely consumed staple crop in Africa and consumption continues to grow at a rapid pace with increasing population. Success in breeding programs are largely dependent on the genetic diversity of a crop. Genetic variability occurs due to genetic differences in individuals within a given population, which is the basis of plant breeding. Thus, if the genetic variability is well managed, diversity can result to permanent gains in the performance of the crop. The objectives of this study were to determine the interaction between grain yield and yield components and to conduct genetic studies on selected rice genotypes. The research was carried out at the University of Port Harcourt Faculty of Agriculture teaching and research farm. Thirteen (13) varieties were used which comprised 7 adapted Nigerian varieties and 6 Korean rice varieties in a randomized complete block design (RCBD) in three replications was established. All agronomic practices were carried out at appropriately crop phenology. North Carolina II mating design was used to perform crosses. Data was collected on 10 agronomic traits. All means were subjected to ANOVA, combining ability, Heterosis and Potence ratio were determined. The progenies from UPIA 2 x UPN 234, FARO 52 X UPN 266 and UPIA 3 X UPN 266 had the best phenotypic and genotypic expression and most of the hybrids had heterotic values than their parents. The results also showed ranges of dominance for genotypes. UPIA 1, UPIA 2, UPN 223, UPN 234 and UPN266 should be included in breeding programs because they showed the best GCA’s across most traits. }, year = {2024} }
TY - JOUR T1 - Combining Ability, Heterosis and Potence Ratio for Yield and Yield Components in Korean Double-Haploid, Progenies and Improved Rice Varieties in Nigeria AU - Ogba Chinonyelum Somtochukwu AU - Efisue Andrew Abiodun Y1 - 2024/07/31 PY - 2024 N1 - https://doi.org/10.11648/j.ijgg.20241203.12 DO - 10.11648/j.ijgg.20241203.12 T2 - International Journal of Genetics and Genomics JF - International Journal of Genetics and Genomics JO - International Journal of Genetics and Genomics SP - 54 EP - 67 PB - Science Publishing Group SN - 2376-7359 UR - https://doi.org/10.11648/j.ijgg.20241203.12 AB - Rice is the most widely consumed staple crop in Africa and consumption continues to grow at a rapid pace with increasing population. Success in breeding programs are largely dependent on the genetic diversity of a crop. Genetic variability occurs due to genetic differences in individuals within a given population, which is the basis of plant breeding. Thus, if the genetic variability is well managed, diversity can result to permanent gains in the performance of the crop. The objectives of this study were to determine the interaction between grain yield and yield components and to conduct genetic studies on selected rice genotypes. The research was carried out at the University of Port Harcourt Faculty of Agriculture teaching and research farm. Thirteen (13) varieties were used which comprised 7 adapted Nigerian varieties and 6 Korean rice varieties in a randomized complete block design (RCBD) in three replications was established. All agronomic practices were carried out at appropriately crop phenology. North Carolina II mating design was used to perform crosses. Data was collected on 10 agronomic traits. All means were subjected to ANOVA, combining ability, Heterosis and Potence ratio were determined. The progenies from UPIA 2 x UPN 234, FARO 52 X UPN 266 and UPIA 3 X UPN 266 had the best phenotypic and genotypic expression and most of the hybrids had heterotic values than their parents. The results also showed ranges of dominance for genotypes. UPIA 1, UPIA 2, UPN 223, UPN 234 and UPN266 should be included in breeding programs because they showed the best GCA’s across most traits. VL - 12 IS - 3 ER -