| Peer-Reviewed

The Effect of Mutation in Brazzein Deduced from Mutational Sites and Sequence Carbon Content

Received: 25 September 2015     Accepted: 10 October 2015     Published: 26 October 2015
Views:       Downloads:
Abstract

Brazzein is a small sweet-tasting protein isolated from the fruit of the African plant, Pentadiplandra brazzeana Baillon with potential of replacement of carbohydrate sweeteners. Carbon content analysis was used to examine the effect of mutation in brazzein’s two regions at residues 29–33 and 39–43 with residue 36 reported to be important in sweet tasting of the protein. Analysis for local carbon density at the mutational sites for brazzein mutants with increased sweetness taste at residues 29 and 41 revealed normal carbon distribution curves with increased carbon frequency peak compared to the wild-type, consequently stabilized the local structure. Brazzein mutants with reduced sweetness taste at residue position 30, 33, 36 and 43 were mostly characterized by abnormal broadened distribution curve for carbon content with decreased frequency peak which destabilized the local structure and possibly leading to loss of protein functionality. Further analysis of carbon distribution profile along protein sequences of brazzein revealed a variation in carbon distribution between mutants with increased sweetness taste and those with decreased sweetness taste. Mutants with increased sweetness taste had carbon distribution profile balancing well conforming to the globular proteins which prefers to have 31.45% of carbon all along the sequence for stability. This study has provided further information and additional insights into protein atomic composition in brazzein and its role in understanding the effect of mutation.

Published in International Journal of Genetics and Genomics (Volume 3, Issue 6)
DOI 10.11648/j.ijgg.20150306.11
Page(s) 59-65
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2015. Published by Science Publishing Group

Keywords

Brazzein, Carbon Content, Mutation, Sweet-Tasting Protein

References
[1] Jin, Z., V. Danilova, F.M. Assadi-Porter, D.J. Aceti, J.L. Markley and G. Hellekant, 2003. Critical regions for the sweetness of brazzein. FEBS Lett., 544: 33–37.
[2] Nagata, K., N. Hongo, Y. Kameda, A. Yamamura, H. Sasaki, W. C. Lee and M. Tanokura, 2013. The structure of brazzein, a sweet-tasting protein from the wild African plant Pentadiplandra brazzeana. Acta Crystallogr. Sect. D-Biol. Crystallogr., 69(4): 642-647.
[3] Ming, D. and G. Hellekant, 1994. Brazzein, a new high-potency thermo stable sweet protein from Pentadiplandra brazzeana B. FEBS letters, 355(1):106-108.
[4] Hellekant, G. and V. Danilova, 2005. Brazzein a Small, Sweet Protein: Discovery and Physiological Overview. Chem. Senses, 30:88–89.
[5] Faus, I., 2000. Recent developments in the characterization and biotechnological production of sweet-tasting proteins. Appl. Microbiol. Biotechnol., 53: 145–251.
[6] Nookaraju, A., C.P. Upadhyaya, S.K. Pandey, K.E. Young, S.J. Hong, S.K. Park and S.W. Park, 2010. Molecular approaches for enhancing sweetness in fruits and vegetables. SciHortic., 127(1) 1-15.
[7] Yount, N.Y. and M.R. Yeaman, 2004. Multidimensional signatures in antimicrobial peptides. Proc. Natl. Acad. Sci. U.S.A. 101:7363-7368.
[8] Assadi-Porter, F.M., D.J. Aceti and J.L. Markley, 2000. Sweetness determinant sites of brazzein, a small, heat-stable, sweet-tasting protein. Arch Biochem Biophys. 376(2): 259-265.
[9] Assadi-Porter, F.M., E.L. Maillet, J.T. Radek, J. Quijada, J.L. Markley and M. Max, 2010. Key amino acid residues involved in multi-point binding interactions between brazzein, a sweet protein, and the T1R2–T1R3 human sweet receptor. J. Mol. Biol, 398(4): 584-599.
[10] Yoon, S.Y., J.N. Kong, D.H. Jo and K.H. Kong, 2011. Residue mutations in the sweetness loops for the sweet-tasting protein brazzein. Food Chem., 129(4): 1327-1330.
[11] Lee, J.W., J.E. Cha, D.H. Jo and K.H. Kong, 2013. Multiple mutations of the critical amino acid residues for the sweetness of the sweet-tasting protein, brazzein. Food Chem., 138(2): 1370-1373.
[12] Rajasekaran, E., K. Akila and M. Vijayasarathy, 2011. Allotment of carbon is responsible for disorders in proteins. Bioinformaution, 6(8): 291.
[13] Rajasekaran, E., 2012. CARd: Carbon distribution analysis program for protein sequences. Bioinformation, 8(11): 508.
[14] Akila, K., N. Sneha and E. Rajasekaran, 2012. Study on carbon distribution at protein regions of disorder. Intern. J. Biosc., Biochem And Bioinf., 2(2): 58–60.
[15] Caldwell, J.E., F. Abildgaard, Ž. Džakula, D. Ming, G. Hellekant, and J.L. Markley, 1998. Solution structure of the thermostable sweet-tasting protein brazzein. Nat Struct. Mol. Biol, 5(6): 427-431.
[16] Rajasekaran, E. and M. Vijayasarathy, 2011. CARBANA: Carbon analysis program for protein sequences. Bioinformation, 5(10): 455.
[17] Zelko, I.N., T.J. Mariani and R. J. Folz, 2002. Superoxide dismutase multigene family: a comparison of the Cu Zn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med., 33(3): 337-349.
[18] Amri, E., F.A. Mamboya, P.D. Nsimama and E. Rajasekaran, 2012. Role of carbon in crystal structures of wild-type and mutated form of dihydrofolate reductase-thymidylate synthase of plasmodium falciparum. Inter. J. Appl. Biol. Pharmaceut Tech. 3(3): 1-6.
[19] Yue, P., Z. Li, and J. Moult, 2005. Loss of protein structure stability as a major causative factor in monogenic disease. J. Mol. Biol., 353(2): 459-473.
[20] Reva, B., Y. Antipin and C. Sander, 2011. Predicting the functional impact of protein mutations: Application to cancer genomics. Nucleic Acids Res., 1: 39(17): e118.
[21] Mamboya, F.A., P.D. Nsimama, E. Amri, J.S. Sharmila and E. Rajasekaran, 2012. Carbon distribution analysis on mutations responsible for Li-Fraumeni syndrome.GSTF J. Bio Sci., 1(2): 1-6.
[22] Nsimama, P.D., A.F. Mamboya, E. Amri and E. Rajasekaran, 2012. Correlation between the mutated colour tunings and carbon distributions in Luciferase bioluminescence. J. Comput. Intel. Bioinf., 5(2): 106-112.
[23] Johri, P., 2013. Atomic level sequence analysis–A Review. Int. J. Comput Bioinfo in Silico Model, 2(4): 173-179.
[24] Senthil, R. and E. Rajasekaran, 2009. Comparative analysis of carbon distribution and hydropathy plot. J. Adv. Biotech., 8(9): 30-31.
[25] Bragg, G.J. and L. Hyder, 2004. Nitrogen versus carbon use in prokaryotic genomes and proteomes. Biol. Sci., 271: 374-377.
[26] Esposito, V., R. Gallucci, D. Picone, G. Saviano, T. Tancredi and P.A. Temussi, 2006.The importance of electrostatic potential in the interaction of sweet proteins with the sweet taste receptor. J. Mol. Biol., 360(2): 448-456.
[27] Jo, H.J., J.S. Noh and K.H. Kong, 2013. Efficient secretory expression of the sweet-tasting protein brazzein in the yeast Kluyveromyces lactis. Protein expression and purification, 90(2): 84-89.
[28] Suh, J.Y., H.S. Kim, M.C. Kim and, K.H. Kong, 2014. Design and Evaluation of Synthetic Peptides Corresponding to the Sweetness Loop of the Sweet-Tasting Protein Brazzein. Bull. Korean Chem. Soc, 35(11): 3353.
[29] Fake, G. and J. Howard, 2014. Brazzein: A High-Intensity Natural Sweetener. In Commercial Plant-Produced Recombinant Protein Products (pp. 247-257). Springer Berlin Heidelberg.
Cite This Article
  • APA Style

    Ezekiel Amri. (2015). The Effect of Mutation in Brazzein Deduced from Mutational Sites and Sequence Carbon Content. International Journal of Genetics and Genomics, 3(6), 59-65. https://doi.org/10.11648/j.ijgg.20150306.11

    Copy | Download

    ACS Style

    Ezekiel Amri. The Effect of Mutation in Brazzein Deduced from Mutational Sites and Sequence Carbon Content. Int. J. Genet. Genomics 2015, 3(6), 59-65. doi: 10.11648/j.ijgg.20150306.11

    Copy | Download

    AMA Style

    Ezekiel Amri. The Effect of Mutation in Brazzein Deduced from Mutational Sites and Sequence Carbon Content. Int J Genet Genomics. 2015;3(6):59-65. doi: 10.11648/j.ijgg.20150306.11

    Copy | Download

  • @article{10.11648/j.ijgg.20150306.11,
      author = {Ezekiel Amri},
      title = {The Effect of Mutation in Brazzein Deduced from Mutational Sites and Sequence Carbon Content},
      journal = {International Journal of Genetics and Genomics},
      volume = {3},
      number = {6},
      pages = {59-65},
      doi = {10.11648/j.ijgg.20150306.11},
      url = {https://doi.org/10.11648/j.ijgg.20150306.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijgg.20150306.11},
      abstract = {Brazzein is a small sweet-tasting protein isolated from the fruit of the African plant, Pentadiplandra brazzeana Baillon with potential of replacement of carbohydrate sweeteners. Carbon content analysis was used to examine the effect of mutation in brazzein’s two regions at residues 29–33 and 39–43 with residue 36 reported to be important in sweet tasting of the protein. Analysis for local carbon density at the mutational sites for brazzein mutants with increased sweetness taste at residues 29 and 41 revealed normal carbon distribution curves with increased carbon frequency peak compared to the wild-type, consequently stabilized the local structure. Brazzein mutants with reduced sweetness taste at residue position 30, 33, 36 and 43 were mostly characterized by abnormal broadened distribution curve for carbon content with decreased frequency peak which destabilized the local structure and possibly leading to loss of protein functionality. Further analysis of carbon distribution profile along protein sequences of brazzein revealed a variation in carbon distribution between mutants with increased sweetness taste and those with decreased sweetness taste. Mutants with increased sweetness taste had carbon distribution profile balancing well conforming to the globular proteins which prefers to have 31.45% of carbon all along the sequence for stability. This study has provided further information and additional insights into protein atomic composition in brazzein and its role in understanding the effect of mutation.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - The Effect of Mutation in Brazzein Deduced from Mutational Sites and Sequence Carbon Content
    AU  - Ezekiel Amri
    Y1  - 2015/10/26
    PY  - 2015
    N1  - https://doi.org/10.11648/j.ijgg.20150306.11
    DO  - 10.11648/j.ijgg.20150306.11
    T2  - International Journal of Genetics and Genomics
    JF  - International Journal of Genetics and Genomics
    JO  - International Journal of Genetics and Genomics
    SP  - 59
    EP  - 65
    PB  - Science Publishing Group
    SN  - 2376-7359
    UR  - https://doi.org/10.11648/j.ijgg.20150306.11
    AB  - Brazzein is a small sweet-tasting protein isolated from the fruit of the African plant, Pentadiplandra brazzeana Baillon with potential of replacement of carbohydrate sweeteners. Carbon content analysis was used to examine the effect of mutation in brazzein’s two regions at residues 29–33 and 39–43 with residue 36 reported to be important in sweet tasting of the protein. Analysis for local carbon density at the mutational sites for brazzein mutants with increased sweetness taste at residues 29 and 41 revealed normal carbon distribution curves with increased carbon frequency peak compared to the wild-type, consequently stabilized the local structure. Brazzein mutants with reduced sweetness taste at residue position 30, 33, 36 and 43 were mostly characterized by abnormal broadened distribution curve for carbon content with decreased frequency peak which destabilized the local structure and possibly leading to loss of protein functionality. Further analysis of carbon distribution profile along protein sequences of brazzein revealed a variation in carbon distribution between mutants with increased sweetness taste and those with decreased sweetness taste. Mutants with increased sweetness taste had carbon distribution profile balancing well conforming to the globular proteins which prefers to have 31.45% of carbon all along the sequence for stability. This study has provided further information and additional insights into protein atomic composition in brazzein and its role in understanding the effect of mutation.
    VL  - 3
    IS  - 6
    ER  - 

    Copy | Download

Author Information
  • Department of Science and Laboratory Technology, Dares Salaam Institute of Technology, Dares Salaam, Tanzania

  • Sections