| Peer-Reviewed

Zebrafish: An in Vivo Model for the Study of Human Diseases

Received: 20 September 2013     Published: 10 November 2013
Views:       Downloads:
Abstract

The zebrafish (Danio rerio) is a powerful model organism for the study of vertebrate biology, being well suited to both developmental and genetic analysis. More recently, the rapid progress of various zebrafish genomics infrastructure initiatives is facilitating the development of zebrafish models of human disease. Genome organization and the pathways involved into control of signal transduction appear to be highly conserved between zebrafish and humans and therefore zebrafish may be used for modeling of human diseases. This review will highlight and describe the utility of zebrafish in the study of human diseases.

Published in International Journal of Genetics and Genomics (Volume 1, Issue 1)
DOI 10.11648/j.ijgg.20130101.12
Page(s) 6-11
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2013. Published by Science Publishing Group

Keywords

Zebrafish, Genetics, Development, Human Diseases

References
[1] RC. Eaton, RD. Farley, "Spawning cycle and egg production of zebrafish (Brachydanio rerio) in the laboratory" Copeia. Vol. 1, pp. 195–209, 1974.
[2] LE. Coverdale, D. Lean, CC. Martin, "Not just a fishing trip-Environmental genomics using zebrafish" Curr. Genomics. Vol. 5, pp. 395-407, 2004.
[3] P. Goldsmith, "Zebrafish as a pharmacological tool: the how, why and when" Curr. Opin. Pharmacol. Vol. 4, pp. 504-512, 2004.
[4] AJ. Hill, H. Teraoka, W. Heideman, RE. Peterson, "Zebrafish as a model vertebrate for investigating chemical toxicity" Toxicol. Sci. Vol. 86, pp. 6-19, 2005.
[5] R. Nagel, "DarT: The embryotest with the zebrafish Danio rerio-a general model in ecotoxicology and toxicology" ALTEX. Vol. 19, pp. 38-48, 2002.
[6] C. Parng, WL. Seng, C. Semino, P. McGrath, "Zebrafish: a preclinical model for drug screening" Assay Drug Dev. Technol. Vol. 1, pp. 41-48, 2002.
[7] WH. Detrich, M. Westerfield, LI. Zon, "The zebrafish: Biology-Methods in cell biology" Vols. 59–60. San Diego: Academic Press, 1999.
[8] M. Westerfield, "The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio)" 4th ed.; Univ. of Oregon Press, Eugene, 2000.
[9] JS. Eisen, "Zebrafish makes a big splash" Cell. Vol. 87(6), pp. 969-977, 1996.
[10] MC. Fishman, "Zebrafish genetics: The enigma of arrival" Proc. Natl. Acad. Sci. USA Vol. 96(19), pp. 10554-10556, 1999.
[11] W. Driever, L. Solnica-Krezel, AF. Schier, SC. Neuhauss, J. Malicki, DL. Stemple, DY. Stainier, F. Zwartkruis, S. Abdelilah, Z. Rangini, J. Belak, C. Boggs, "A genetic screen for mutations affecting embryogenesis in zebrafish" Development. Vol. 123(1), pp. 37-46, 1996.
[12] P. Haffter, M. Granato, M. Brand, MC. Mullins, M. Hammerschmidt, DA. Kane, J. Odenthal, FJ. Van Eeden, YJ. Jiang, CP. Heisenberg, RN. Kelsh, M. Furutani-Seiki, E. Vogelsang, D. Beuchle, U. Schach, C. Fabian, C. Nusslein-Volhard, "The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio" Development. Vol. 123(1), pp. 1-36, 1996.
[13] J. Cerda, M. Conrad, J. Markl, M. Brand, H. Herrmann, "Zebrafish vimentin: Molecular characterisation, assembly properties and developmental expression" Eur. J. Cell Biol. Vol. 77, pp. 175-187, 1998.
[14] JH. Postlethwait, IG. Woods, P. Ngo-Hazelett, YL. Yan, PD. Kelly, F. Chu, H. Huang, A. Hill Force, WS. Talbot, "Zebrafish comparative genomics and the origins of vertebrate chromosomes" Genome Res. Vol. 10, pp. 1890-902, 2000.
[15] Zebrafish Genome Resources [online], http://www.ncbi.nlm. nih.gov/genome/guide/zebrafish/
[16] A. Amsterdam, N. Hopkins, "Mutagenesis strategies in zebrafish for identifying genes involved in development and disease" Trends Genet. Vol. 22(9), pp. 473-8, 2006.
[17] KS. Warren, MC. Fishman, "Physiological genomics: mutant screens in zebrafish" Am. J. Physiol. Vol. 275, pp. H1-7, 1998.
[18] MC. Fishman, DY. Stainier, RE. Breitbart, M. Westerfield, "Zebrafish: genetic and embryological methods in a transparent vertebrate embryo" Methods Cell Biol. Vol. 52, pp. 67-82, 1997.
[19] S. Horne-Badovinac, D. Lin, S. Waldron, M. Schwarz, G. Mbamalu, T. Pawson, Y. Jan, DY. Stainier, S. Abdelilah Seyfried, "Positional cloning of heart and soul reveals multiple roles for PKClambda in zebrafish organogenesis" Curr. Biol. Vol. 11, pp. 1492-1502, 2001.
[20] K. Baker, KS. Warren, G Yellen, MC. Fishman, "Defective pacemaker current (Ih) in a zebrafish mutant with a slow heart rate" Proc. Nat. Acad. Sci. USA Vol. 94, pp. 4554-4559, 1997.
[21] KS. Warren, K. Baker, MC. Fishman, "The slow mo mutation reduces pacemaker current and heart rate in adult zebrafish" Am. J. Physiol. Heart Circ. Physiol. Vol. 281, pp. H1711-1719, 2001.
[22] JA. Towbin, TC. McQuinn, "Gridlock: a model for coarctation of the aorta?" Nat. Med. Vol. 1, pp. 1141-1142. 1995.
[23] BM. Weinstein, DL. Stemple, W. Driever, MC. Fishman. "Gridlock, a localized heritable vascular patterning defects in the zebrafish" Nat. Med. Vol. 1, pp. 1143-1147, 1995.
[24] TP. Zhong, M. Rosenberg, MA. Mohideen, B. Weinstein, MC. Fishman, "Gridlock, an HLH gene required for assembly of the aorta in zebrafish" Science Vol. 287, pp. 1820-1824, 2000.
[25] J. Alexander, DY. Stanier, D. Yelon, "Screening mosaic F1 females for mutations affecting zebrafish heart induction and patterning" Dev. Genet. Vol. 22, pp. 288-299, 1998.
[26] R. Vandenberghe, J. Tournoy, "Cognitive aging and Alzheimer’s disease" Postgrad. Med. J. Vol. 81, pp. 343-52, 2005.
[27] C. Mount, C. Downton, "Alzheimer disease: progress or profit?" Nat. Med. Vol. 12, 780-4, 2006.
[28] DJ. Selkoe, "Toward a comprehensive theory for Alzheimer’s disease. Hypothesis: Alzheimer’s disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein" Ann. NY Acad. Sci. Vol. 924, pp. 17-25, 2000.
[29] A. Mudher, S. Lovestone, "Alzheimer’s disease-do tauists and baptists finally shake hands?" Trends Neurosci. Vol. 25, pp. 22-6, 2002.
[30] R. Vandenberghe, J. Tournoy, "Cognitive aging and Alzheimer’s disease" Postgrad. Med. J. Vol. 81, pp. 343-52, 2005.
[31] A. Musa, H. Lehrach, VA. Russo, "Distinct expression patterns of two zebrafish homologues of the human APP gene during embryonic development" Dev. Genes. Evol. Vol. 211, pp. 563-7, 2001.
[32] M. Newman, FI. Musgrave, M. Lardelli, "Alzheimer disease: amyloidogenesis, the presenilins and animal models" Biochim. Biophys. Acta. Vol. 1772, pp. 285-97, 2007.
[33] HG. Tomasiewicz, DB. Flaherty, JP. Soria, JG Wood, "Transgenic zebrafish model of neurodegeneration" J. Neurosci. Res. Vol. 70, pp. 734-45, 2002.
[34] MJ. Parsons, I. Campos, EM. Hirst, DL. Stemple, "Removal of dystroglycan causes severe muscular dystrophy in zebrafish embryos" Development Vol. 129, pp. 3505-3512, 2002.
[35] F. Bolanos-Jimenez, A. Bordais, M. Behra, U. Strahle, D. Mornet, J. Sahel, A. Rendon "Molecular cloning and characterization of dystrophin and Dp71, two products of the Duchenne Muscular Dystrophy gene, in zebrafish" Gene. Vol. 274, pp. 217-226, 2001.
[36] LM. Swanhart, CC. Cosentino, CQ. Diep, AJ. Davidson, M. de Caestecker, NA. Hukriede, "Zebrafish kidney development: basic science to translational research" Birth Defects Res. C. Embryo Today. Vol. 93(2), pp. 141-156, 2011.
[37] Y. Cao, A. Park, Z. Sun, "Intraflagellar transport proteins are essential for cilia formation and for planar cell polarity" J. Am. Soc. Nephrol. Vol. 21(8), pp. 1326-1333, 2010.
[38] Z. Sun, A. Amsterdam, GJ. Pazour, DG. Cole, MS. Miller, N. Hopkins, "A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney" Development. Vol. 131(16), pp. 4085-4093, 2004.
[39] E. Van Rooijen, RH. Giles, EE. Voest, C. Van Rooijen, S. Schulte-Merker, FJ. Van Eeden, "LRRC50, a conserved ciliary protein implicated in polycystic kidney disease" J. Am. Soc. Nephrol. Vol. 19(6), pp. 1128-1138, 2008.
[40] JL. Tobin, PL. Beales, "Restoration of renal function in zebrafish models of ciliopathies" Pediatr. Nephrol. Vol. 23(11), pp. 2095-2099, 2008.
[41] CQ. Diep, D Ma, RC. Deo, TM. Holm, RW. Naylor, N. Arora, RA. Wingert, F. Bollig, G. Djordjevic, B. Lichman, H. Zhu, T. Ikenaga, F. Ono, C. Englert, CA. Cowan, NA. Hukriede, RI. Handin, AJ. Davidson, "Identification of adult nephron progenitors capable of kidney regeneration in zebrafish" Nature. Vol. 470(7332), pp. 95-100, 2011.
[42] IA. Drummond, A. Majumdar, H. Hentschel, M. Elger, L. Solnica-Krezel, AF. Schier, SC. Neuhauss, DL. Stemple, F. Zwartkruis, Z. Rangini, W. Driever, MC. Fishman, "Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function" Development. Vol. 125, pp. 4655-4667, 1998.
[43] GR. Dressler, "Kidney development branches out" Dev. Genet. Vol. 24, pp. 189-193, 1999.
[44] GS. Gerhard, "Comparative aspects of zebrafish (Danio rerio) as a model for aging research" Experimen. Gerontol. Vol. 38, pp. 1333-1341, 2003.
[45] B. Elo, CM. Villano, D. Govorco, LA. White, "Larval zebrafish as a model for glucose metabolism: expression of phosphoenolpyruvate carboxykinase as a marker for exposure to anti diabetic compounds" J. Mol. Endocinol. Vol. 38, pp. 433-440, 2007.
[46] M. David, Langenau, David Traver, A. Adolfo, Ferrando, L. Jeffery, Kutok, C. Jon, Aster, P. John, Kanki, Shuo Lin, Ed Prochownik, S. Nikolaus, Trede, I. Leonard, A. Zon, Thomas Look, "Myc-Induced T Cell Leukemia in Transgenic Zebrafish" Science. Vol. 299 (5608), pp. 887-890, 2003.
[47] E. Hatem, Sabaawy, Mizuki Azuma, J. Lisa, Embree, Huai-Jen Tsai, F. Matthew, Starost, Dennis D Hickstein, "TEL-AML1 transgenic zebrafish model of precursor B cell acute lymphoblastic leukemia" Proc. Natl. Acad. Sci. USA Vol. 103(41), pp. 15166-15171, 2006.
[48] JR. Yeh, KM. Munson, YL. Chao, QP. Peterson, CA. Macrae, RT. Peterson, "AML1-ETO reprograms hematopoietic cell fate by down regulating scl expression" Development. Vol. 135(2), pp. 401-410, 2008.
[49] KE. Elagib, AN. Goldfarb, "Oncogenic pathways of AML1-ETO in acute myeloid leukemia: multifaceted manipulation of marrow maturation" Cancer Lett. Vol. 251(2), pp. 179-86, 2007.
[50] AEH. Emery, "The muscular dystrophies" The Lancet. Vol. 359(9307), pp. 687-695, 2002.
[51] M. Granato, FJ. Van Eeden, U. Schach, T. Trowe, M. Brand, M. Furutani-Seiki, P. Haffter, M. Hammerschmidt, CP. Heisenberg, YJ. Jiang, DA. Kane, RN. Kelsh, MC. Mullins, J. Odenthal, C. Nusslein-Volhard, "Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva" Development. Vol. 123, pp. 399-413, 1996.
[52] DI. Bassett, RJ. Bryson-Richardson, DF. Daggett, P. Gautier, DG. Keenan, PD. Currie. "Dystrophin is required for the formation of stable muscle attachments in the zebrafish embryo" Development. Vol. 130(23), pp. 5851-5860, 2003.
[53] WR. Kim, RS. Brown, NA. Terrault, H. El-Serag, "Burden of liver disease in the United States: summary of a workshop" Hepatology, Vol. 36(1), pp. 227-242, 2002.
[54] CS. Lieber, "Alcoholic fatty liver: its pathogenesis and mechanism of progression to inflammation and fibrosis" Alcohol. Vol. 34(1), pp. 9-19, 2004.
[55] MJ. Passeri, A. Cinaroglu, C. Gao, KC. Sadler, "Hepatic steatosis in response to acute alcohol exposure in zebrafish requires sterol regulatory element binding protein activation" Hepatology, Vol. 49(2), pp. 443-452, 2009.
[56] KC. Sadler, A. Amsterdam, C. Soroka, J. Boyer, and N. Hopkins, "A genetic screen in zebrafish identifies the mutants vps18, nf2 and foie gras as models of liver disease" Development. Vol. 132(15), pp. 3561-3572, 2005.
[57] A. Cinaroglu, C. Gao, D. Imrie, KC. Sadler, "Activating transcription factor 6 plays protective and pathological roles in steatosis due to endoplasmic reticulum stress in zebrafish" Hepatology, Vol. 54(2), pp. 495-508, 2011.
[58] AA. Amali, RD. Rekha, CJ. Lin, WL. Wang, HY. Gong, GM. Her, JL. Wu, "Thioacetamide induced liver damage in zebrafish embryo as a disease model for steatohepatitis" J. Biomed. Sci, Vol. 13(2), pp. 225-232, 2006.
Cite This Article
  • APA Style

    Bibhas Kar, Sivamani Subbiah. (2013). Zebrafish: An in Vivo Model for the Study of Human Diseases. International Journal of Genetics and Genomics, 1(1), 6-11. https://doi.org/10.11648/j.ijgg.20130101.12

    Copy | Download

    ACS Style

    Bibhas Kar; Sivamani Subbiah. Zebrafish: An in Vivo Model for the Study of Human Diseases. Int. J. Genet. Genomics 2013, 1(1), 6-11. doi: 10.11648/j.ijgg.20130101.12

    Copy | Download

    AMA Style

    Bibhas Kar, Sivamani Subbiah. Zebrafish: An in Vivo Model for the Study of Human Diseases. Int J Genet Genomics. 2013;1(1):6-11. doi: 10.11648/j.ijgg.20130101.12

    Copy | Download

  • @article{10.11648/j.ijgg.20130101.12,
      author = {Bibhas Kar and Sivamani Subbiah},
      title = {Zebrafish: An in Vivo Model for the Study of Human Diseases},
      journal = {International Journal of Genetics and Genomics},
      volume = {1},
      number = {1},
      pages = {6-11},
      doi = {10.11648/j.ijgg.20130101.12},
      url = {https://doi.org/10.11648/j.ijgg.20130101.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijgg.20130101.12},
      abstract = {The zebrafish (Danio rerio) is a powerful model organism for the study of vertebrate biology, being well suited to both developmental and genetic analysis. More recently, the rapid progress of various zebrafish genomics infrastructure initiatives is facilitating the development of zebrafish models of human disease. Genome organization and the pathways involved into control of signal transduction appear to be highly conserved between zebrafish and humans and therefore zebrafish may be used for modeling of human diseases. This review will highlight and describe the utility of zebrafish in the study of human diseases.},
     year = {2013}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Zebrafish: An in Vivo Model for the Study of Human Diseases
    AU  - Bibhas Kar
    AU  - Sivamani Subbiah
    Y1  - 2013/11/10
    PY  - 2013
    N1  - https://doi.org/10.11648/j.ijgg.20130101.12
    DO  - 10.11648/j.ijgg.20130101.12
    T2  - International Journal of Genetics and Genomics
    JF  - International Journal of Genetics and Genomics
    JO  - International Journal of Genetics and Genomics
    SP  - 6
    EP  - 11
    PB  - Science Publishing Group
    SN  - 2376-7359
    UR  - https://doi.org/10.11648/j.ijgg.20130101.12
    AB  - The zebrafish (Danio rerio) is a powerful model organism for the study of vertebrate biology, being well suited to both developmental and genetic analysis. More recently, the rapid progress of various zebrafish genomics infrastructure initiatives is facilitating the development of zebrafish models of human disease. Genome organization and the pathways involved into control of signal transduction appear to be highly conserved between zebrafish and humans and therefore zebrafish may be used for modeling of human diseases. This review will highlight and describe the utility of zebrafish in the study of human diseases.
    VL  - 1
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Center for Genetic Studies & Research, the Madras Medical Mission, Chennai – 600037, India

  • Center for Genetic Studies & Research, the Madras Medical Mission, Chennai – 600037, India

  • Sections