The present study focuses on the structural and magnetic properties of Sm doped ZnO at 3% concentrations. These compounds have been synthesized by a chemical coprecipitation method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and magnetization method (M– H). The XRD pattern of all the samples showed ZnO hexagonal wurtzite structure with sharp and intense peaks with small change in lattice parameters due to Sm doping in ZnO, indicating the substitution of Sm ion for Zn sites. Magnetic measurements show an enhancement in room temperature ferromagnetism (RTFM) with Sm doping. Ferromagnetic behavior exists over and above the diamagnetic behavior, RTFM related to The Zn vacancies and diamagnetic (which exists over alarge scale) related to the oxygen vacancies which mediate the interaction of dopant ions.
Published in | International Journal of Electrical Components and Energy Conversion (Volume 4, Issue 1) |
DOI | 10.11648/j.ijecec.20180401.12 |
Page(s) | 13-20 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2018. Published by Science Publishing Group |
ZnO, Nanoparticles, Semiconductors, Magnetic Materials, Zinc Vacancy, Structure, Microstructure, Magnetic with Different Temperature
[1] | A. Wei, L. Pan, W. Huang, Materials Science and Engineering B 176 (2011) 1409. |
[2] | Z. L. Wang, Adv. Funct. Mater. 18 (2008) 3553. |
[3] | D. A. Arora, K. Asokan, A. Mahajan, RSC Adv. 6 (2016) 78122. |
[4] | Y. Liu, W. Luo, R. Li, H. Zhu, X. Chen, Opt. Express 17:12 ( 2009) 9748. |
[5] | B. Roy, S. Chakrabarty, O. Mondal, M. Pal, A. Dutta, Mater. Charact., 70 ( 2012) 1. |
[6] | J. Piao, L. Tseng, J. Yi, Chemical Physics Letters 649 (2016) 19. |
[7] | T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287 (2000) 1019. |
[8] | B. D. Yuhas, D. O. Zitoun, P. J. Pauzauskie, Angew. Chem. Int. Ed. 45 (2006) 420. |
[9] | A. J. Kulandaisamy, Ceramics International (2015) (http://dx.doi.org/10.1016/j.ceramint.2015.09.084). |
[10] | B. Pal, S. Dhara, P. K. Giri, Journal of Alloys and Compounds (2014), doi: (http://dx.doi.org/10.1016/j.jallcom.2014.06.087). |
[11] | G. Shen, J. H. Cho, S. Jung, and C. J. Lee, Chem. Phys. Lett. 401 (2005) 529. |
[12] | G. Vijayaprasath, R. Murugan, Ceramics International, (http://dx.doi.org /10.1016/ j.cer amint. 2015.04.160). |
[13] | J. S. Ruiz, G. Criado, M. H. Chu, Nano Lett., 11 (2011) 5322. |
[14] | W. An, X. Wu, X. C. Zeng, J. Phys. Chem. C, 112 (2008) 5747. |
[15] | S. Dhar, O. Brandt, M. Ramsteiner, Phys. Rev. Lett., 94 (2005) 037205. |
[16] | D. Wang, Q. Chen, G. Xing, Nano Letters, 12 (2012) 3994. |
[17] | G. Vijayaprasath, G. Ravi, A. S. Haja Hameed, J. Phys. Chem. C, 118 (2014) 9715. |
[18] | B. M Abdolmajid, Int. J. Electrochem. Sci; 4 (2009) 247. |
[19] | Renugadevi et al., IJPSR 3:8 (2012) 2639. |
[20] | D. Gao, Z. Zhang, J. Fu, Journal of applied physics 105 ( 2009) 113928. |
[21] | N. H. Hong, J. Sakai, N. Poirot, Phys. Rev. B 73 (2006) 132404. |
[22] | S. Banerjee, M. Mandal, N. Gayathri, Appl. Phys. Lett. 91 ( 2007) 182501. |
[23] | A. Sundaresan, R. Bhargavi, N. Rangarajan, Phys. Rev. B 74 ( 2006) 161306. |
[24] | N. H. Hong, J. Sakai, and V. Briz’e, J. Phys.: Condens. Matter 19 ( 2007) 036219. |
[25] | A. Sundaresan, R. Bhargavi, Phy Rev B; 74 ( 2006) 161306. |
[26] | S. Kumar, Y. J. Kim, B. H. Koo, Materials Letters 63:2 ( 2009) 194. |
[27] | Q. Wang, Q. Sun, G. Chen, Phy Rev B 77 (2008) 205411. |
[28] | A. Zubiaga, F. Plazaola, Phys. Rev. B 76 (2007) 085202. |
[29] | N. Rajamanickam, Journal of Alloys and Compounds 614 (2014) 151. |
[30] | D. Y. Inamdar, A. D. Lad, J. Phys. Chem. C 114 (3) (2010) 1451. |
[31] | A. Sundaresan, R. Bhargavi, Phys. Rev. B 74 (2006) 161306. |
[32] | R. N. Aljawfi, F. Rahman, Materials Letters 99 (2013) 18. |
[33] | Y. Wang, Materials Research Bulletin 83 ( 2016) 408. |
[34] | J. B. Yi, C. C. Lim, G. Z. Xing, Phys Rev Lett. 104:13 (2010) 137201. |
[35] | Y. Wang, X. Luo, Chem Mater. 27:4 ( 2015) 1285. |
[36] | Y. Wang, J. Piao, G. Xing, Y. Lu, Journal of Materials Chemistry C (2015). |
[37] | A. G. El Hachimi, H. Zaari, A. Benyoussef, Journal of rare earths 32: 8 (2014) 715. |
[38] | S. Chawla, M. Saroha, R. K. Kotnala, Electron. Mater. Lett. 10: 1 ( 2014) 73. |
[39] | U. Ozgur, Ya. I. Alivov, C. Liu, J. Appl. Phys. 98 (2005) 041301. |
[40] | X. S. Wang, Z. C. Wu, J. F. Webb, Appl Phys. A 77 (2003) 561. |
[41] | S. J. Pearton, C. R. Abernathy, J. Appl. Phys. 93 (2003) 1. |
[42] | J. M. D. Coye, M. Venkatesan, and, Nature Materials 4 (2005) 173. |
[43] | T. Dietl, H. Ohno, F. Matsukura, Science 287 (2000) 1019. |
[44] | K. Jayanthi, S. Chawla, A. Joshi, J. Phys. Chem. C. 114 (2010) 18429. |
[45] | S. Chawla, K. Jayanthi, Phys. Rev. B 79 (2009) 125204. |
[46] | S. Chawla, K. Jayanthi, J. Appl. Phys. 10 6 (2009 113923. |
[47] | A. Janotti, C. G. V. d. Walle, Phys. Rev. B 76 (2007) 165202. |
[48] | N. Y. Garces, et al., Appl. Phys. Lett. 80 (2002) 1334. |
[49] | I. Zutic, J. Fabian, S. C. Erwin, IBM J. Res. Dev. 50 (2006) 121. |
[50] | T. Tsuji, Y. Terai, M. Kamarudin, 358 (2012) 2443. |
[51] | T. Ishizuka, Anal. Chem. 45 (1973) 538. |
[52] | W. M. Jadwisienczak, H. J. Lozykowski, A. J. Electron. Mater. 31 (2002) 776. |
[53] | X. Q. Meng, J. Lumin. 122 (2007) 766. |
[54] | K. Samanta, P. Bhattacharya, R. S. Katiyar, Appl. Phys. Lett. 87 (2005) 101903. |
[55] | H. Y. He, J. Fei, J. Lu, J. Nanostruct. Chem. 5 (2015) 169. |
[56] | L. T. Tseng, et al., AIP Adv. 4 (2014) 067117. |
APA Style
Hanan Hassan Hantour, Nadia Abd El-Mohsen, Suzan Naser El-Sayed, Assma Mahmoud Aoud Mahmoud. (2018). Effect of Annealing on the Structural and Magnetic Properties of 3% Sm Doped ZnO. International Journal of Electrical Components and Energy Conversion, 4(1), 13-20. https://doi.org/10.11648/j.ijecec.20180401.12
ACS Style
Hanan Hassan Hantour; Nadia Abd El-Mohsen; Suzan Naser El-Sayed; Assma Mahmoud Aoud Mahmoud. Effect of Annealing on the Structural and Magnetic Properties of 3% Sm Doped ZnO. Int. J. Electr. Compon. Energy Convers. 2018, 4(1), 13-20. doi: 10.11648/j.ijecec.20180401.12
AMA Style
Hanan Hassan Hantour, Nadia Abd El-Mohsen, Suzan Naser El-Sayed, Assma Mahmoud Aoud Mahmoud. Effect of Annealing on the Structural and Magnetic Properties of 3% Sm Doped ZnO. Int J Electr Compon Energy Convers. 2018;4(1):13-20. doi: 10.11648/j.ijecec.20180401.12
@article{10.11648/j.ijecec.20180401.12, author = {Hanan Hassan Hantour and Nadia Abd El-Mohsen and Suzan Naser El-Sayed and Assma Mahmoud Aoud Mahmoud}, title = {Effect of Annealing on the Structural and Magnetic Properties of 3% Sm Doped ZnO}, journal = {International Journal of Electrical Components and Energy Conversion}, volume = {4}, number = {1}, pages = {13-20}, doi = {10.11648/j.ijecec.20180401.12}, url = {https://doi.org/10.11648/j.ijecec.20180401.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijecec.20180401.12}, abstract = {The present study focuses on the structural and magnetic properties of Sm doped ZnO at 3% concentrations. These compounds have been synthesized by a chemical coprecipitation method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and magnetization method (M– H). The XRD pattern of all the samples showed ZnO hexagonal wurtzite structure with sharp and intense peaks with small change in lattice parameters due to Sm doping in ZnO, indicating the substitution of Sm ion for Zn sites. Magnetic measurements show an enhancement in room temperature ferromagnetism (RTFM) with Sm doping. Ferromagnetic behavior exists over and above the diamagnetic behavior, RTFM related to The Zn vacancies and diamagnetic (which exists over alarge scale) related to the oxygen vacancies which mediate the interaction of dopant ions.}, year = {2018} }
TY - JOUR T1 - Effect of Annealing on the Structural and Magnetic Properties of 3% Sm Doped ZnO AU - Hanan Hassan Hantour AU - Nadia Abd El-Mohsen AU - Suzan Naser El-Sayed AU - Assma Mahmoud Aoud Mahmoud Y1 - 2018/02/26 PY - 2018 N1 - https://doi.org/10.11648/j.ijecec.20180401.12 DO - 10.11648/j.ijecec.20180401.12 T2 - International Journal of Electrical Components and Energy Conversion JF - International Journal of Electrical Components and Energy Conversion JO - International Journal of Electrical Components and Energy Conversion SP - 13 EP - 20 PB - Science Publishing Group SN - 2469-8059 UR - https://doi.org/10.11648/j.ijecec.20180401.12 AB - The present study focuses on the structural and magnetic properties of Sm doped ZnO at 3% concentrations. These compounds have been synthesized by a chemical coprecipitation method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and magnetization method (M– H). The XRD pattern of all the samples showed ZnO hexagonal wurtzite structure with sharp and intense peaks with small change in lattice parameters due to Sm doping in ZnO, indicating the substitution of Sm ion for Zn sites. Magnetic measurements show an enhancement in room temperature ferromagnetism (RTFM) with Sm doping. Ferromagnetic behavior exists over and above the diamagnetic behavior, RTFM related to The Zn vacancies and diamagnetic (which exists over alarge scale) related to the oxygen vacancies which mediate the interaction of dopant ions. VL - 4 IS - 1 ER -