The study of laminated magnetostrictive plate without shear deformation under thermal vibration is calculated by using the generalized differential quadrature (GDQ) method. In the thermoelastic stress-strain relations that containing the linear temperature rise and the magnetostrictive coupling terms with velocity feedback control. The dynamic differential equations without shear deformation are normalized and discrete into the dynamic discretized equations with GDQ method. Four edges of rectangular laminated magnetostrictive plate with simply supported boundary conditions are considered. In the moderately thick plate of laminated magnetostrictive plate, the effect of shear deformation should be considered for the computational controlled values of transverse center deflection and dominated normal stress.
Published in | International Journal of Electrical Components and Energy Conversion (Volume 3, Issue 3) |
DOI | 10.11648/j.ijecec.20170303.12 |
Page(s) | 63-69 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Magnetostrictive Plate, Shear Deformation, Thermal Vibration, GDQ; Velocity Feedback Control
[1] | Arani A. G., Maraghi Z. K., A feedback control system for vibration of magnetostrictive plate subjected to follower force using sinusoidal shear deformation theory. Ain Shams Engineering Journal 2016; 7: 361–369. |
[2] | Zhang Y., Zhou H., Zhou Y., Vibration suppression of cantilever laminated composite plate with nonlinear giant magnetostrictive material layers. Acta Mechanica Solida Sinica 2015; 28: 50-61. |
[3] | Sarangan S., Singh B. N., Higher-order closed-form solution for the analysis of laminated composite and sandwich plates based on new shear deformation theories. Composite Structures 2016; 138: 391–403. |
[4] | Hong CC., Rapid heating induced vibration of magnetostrictive functionally graded material plates. Transactions of the ASME, Journal of Vibration and Acoustics 2012; 134: 021019, pp.1-11. |
[5] | Nguyen T. K., Sab K., Bonnet G., First-order shear deformation plate models for functionally graded materials. Composite Struct 2008; 83: 25–36. |
[6] | Ramirez F., Heyliger P. R., Pan E., Free vibration response of two-dimensional magneto-electro-elastic laminated plates. J of Sound and Vibration 2006; 292: 626-644. |
[7] | Lee S. J., Reddy J. N., Non-linear response of laminated composite plates under thermomechanical loading. Int J of Non-linear Mech 2005; 40: 971-985. |
[8] | Lee S. J., Reddy J. N., Rostam-Abadi F., Transient analysis of laminated composite plates with embedded smart-material layers. Fin Elem in Analysis and Design 2004; 40: 463–483. |
[9] | Hong C. C., Thermal vibration and transient response of magnetostrictive functionally graded material plates. European Journal of Mechanics A/Solids 2014; 43: 78-88. |
[10] | Hong C. C., Transient responses of magnetostrictive plates without shear effects. International Journal of Engineering Science 2009; 47: 355-362. |
[11] | Bert C. W., Jang S. K., Striz A. G., Nonlinear bending analysis of orthotropic rectangular plates by the method of differential quadrature. Comput Mech 1989; 5: 217-226. |
[12] | Shu C., Du H., Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analyses of beams and plates. Int J of Solds and Struct 1997; 34: 819-835. |
[13] | Whitney J. M., Structural analysis of laminated anisotropic plates. Lancaster, PA, USA: Technomic Publishing Company, Inc., 1987. |
APA Style
Chih-Chiang Hong. (2017). Thermal Vibration of Laminated Magnetostrictive Plates Without Shear Effects. International Journal of Electrical Components and Energy Conversion, 3(3), 63-69. https://doi.org/10.11648/j.ijecec.20170303.12
ACS Style
Chih-Chiang Hong. Thermal Vibration of Laminated Magnetostrictive Plates Without Shear Effects. Int. J. Electr. Compon. Energy Convers. 2017, 3(3), 63-69. doi: 10.11648/j.ijecec.20170303.12
AMA Style
Chih-Chiang Hong. Thermal Vibration of Laminated Magnetostrictive Plates Without Shear Effects. Int J Electr Compon Energy Convers. 2017;3(3):63-69. doi: 10.11648/j.ijecec.20170303.12
@article{10.11648/j.ijecec.20170303.12, author = {Chih-Chiang Hong}, title = {Thermal Vibration of Laminated Magnetostrictive Plates Without Shear Effects}, journal = {International Journal of Electrical Components and Energy Conversion}, volume = {3}, number = {3}, pages = {63-69}, doi = {10.11648/j.ijecec.20170303.12}, url = {https://doi.org/10.11648/j.ijecec.20170303.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijecec.20170303.12}, abstract = {The study of laminated magnetostrictive plate without shear deformation under thermal vibration is calculated by using the generalized differential quadrature (GDQ) method. In the thermoelastic stress-strain relations that containing the linear temperature rise and the magnetostrictive coupling terms with velocity feedback control. The dynamic differential equations without shear deformation are normalized and discrete into the dynamic discretized equations with GDQ method. Four edges of rectangular laminated magnetostrictive plate with simply supported boundary conditions are considered. In the moderately thick plate of laminated magnetostrictive plate, the effect of shear deformation should be considered for the computational controlled values of transverse center deflection and dominated normal stress.}, year = {2017} }
TY - JOUR T1 - Thermal Vibration of Laminated Magnetostrictive Plates Without Shear Effects AU - Chih-Chiang Hong Y1 - 2017/11/28 PY - 2017 N1 - https://doi.org/10.11648/j.ijecec.20170303.12 DO - 10.11648/j.ijecec.20170303.12 T2 - International Journal of Electrical Components and Energy Conversion JF - International Journal of Electrical Components and Energy Conversion JO - International Journal of Electrical Components and Energy Conversion SP - 63 EP - 69 PB - Science Publishing Group SN - 2469-8059 UR - https://doi.org/10.11648/j.ijecec.20170303.12 AB - The study of laminated magnetostrictive plate without shear deformation under thermal vibration is calculated by using the generalized differential quadrature (GDQ) method. In the thermoelastic stress-strain relations that containing the linear temperature rise and the magnetostrictive coupling terms with velocity feedback control. The dynamic differential equations without shear deformation are normalized and discrete into the dynamic discretized equations with GDQ method. Four edges of rectangular laminated magnetostrictive plate with simply supported boundary conditions are considered. In the moderately thick plate of laminated magnetostrictive plate, the effect of shear deformation should be considered for the computational controlled values of transverse center deflection and dominated normal stress. VL - 3 IS - 3 ER -