Text mining and sentiment analysis have received huge attention recently, specially because of the availability of vast data in form of text available on social media, e-commerce websites, blogs and other similar sources. This data is usually unstructured and contains noise, therefore the task of gaining information is complex and expensive. There is a growing need for developing different methodologies and models for efficiently processing the texts and extracting apt information. One way to extract information is text mining and sentiment analysis, that include: data acquisition, data pre-processing and normalization, feature extraction and representation, labelling, and finally the application of various Natural Language Processing (NLP) and machine learning algorithms. This paper provides an overview of different methods used in text mining and sentiment analysis elaborating on all subtasks.
Published in | International Journal on Data Science and Technology (Volume 4, Issue 2) |
DOI | 10.11648/j.ijdst.20180402.12 |
Page(s) | 49-53 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2018. Published by Science Publishing Group |
Sentiment Analysis, Supervised Learning, Unsupervised Learning, Text Mining, Feature Extraction, Feature Representation
[1] | Salloum, S. A., AlHamad, A. Q., Al-Emran, M., & Shaalan, K. (2018). A Survey of Arabic Text Mining. In Intelligent Natural Language Processing: Trends and Applications (pp. 417-431). Springer, Cham. |
[2] | Kouloumpis, E., Wilson, T., & Moore, J. D. (2011). Twitter sentiment analysis: The good the bad and the omg!. Icwsm, 11 (538-541), 164. |
[3] | Prabowo, R., & Thelwall, M. (2009). Sentiment analysis: A combined approach. Journal of Informetrics, 3 (2), 143-157. |
[4] | Mudinas, A., Zhang, D., & Levene, M. (2012, August). Combining lexicon and learning based approaches for concept-level sentiment analysis. In Proceedings of the first international workshop on issues of sentiment discovery and opinion mining (p. 5). ACM. |
[5] | Lin, C., & He, Y. (2009, November). Joint sentiment/topic model for sentiment analysis. In Proceedings of the 18th ACM conference on Information and knowledge management (pp. 375-384). ACM. |
[6] | Li, N., & Wu, D. D. (2010). Using text mining and sentiment analysis for online forums hotspot detection and forecast. Decision support systems, 48 (2), 354-368. |
[7] | McDonald, R., Hannan, K., Neylon, T., Wells, M., & Reynar, J. (2007). Structured models for fine-to-coarse sentiment analysis. In Proceedings of the 45th annual meeting of the association of computational linguistics (pp. 432-439). |
[8] | Saleh, M. R., Martín-Valdivia, M. T., Montejo-Ráez, A., & Ureña-López, L. A. (2011). Experiments with SVM to classify opinions in different domains. Expert Systems with Applications, 38 (12), 14799-14804. |
[9] | Wang, S., & Manning, C. D. (2012, July). Baselines and bigrams: Simple, good sentiment and topic classification. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers-Volume 2 (pp. 90-94). Association for Computational Linguistics. |
[10] | Ng, V., Dasgupta, S., & Arifin, S. M. (2006, July). Examining the role of linguistic knowledge sources in the automatic identification and classification of reviews. In Proceedings of the COLING/ACL on Main conference poster sessions (pp. 611-618). Association for Computational Linguistics. |
[11] | Mesnil, G., Mikolov, T., Ranzato, M. A., & Bengio, Y. (2014). Ensemble of generative and discriminative techniques for sentiment analysis of movie reviews. arXiv preprint arXiv:1412.5335. |
[12] | Tripathy, A., Agrawal, A., & Rath, S. K. (2016). Classification of sentiment reviews using n-gram machine learning approach. Expert Systems with Applications, 57, 117-126. |
[13] | Zheng, L., Wang, H., & Gao, S. (2018). Sentimental feature selection for sentiment analysis of Chinese online reviews. International journal of machine learning and cybernetics, 9 (1), 75-84. |
[14] | Law, D., Gruss, R., & Abrahams, A. S. (2017). Automated defect discovery for dishwasher appliances from online consumer reviews. Expert Systems with Applications, 67, 84-94. |
[15] | Nguyen, D. Q., Nguyen, D. Q., Vu, T., & Pham, S. B. (2014). Sentiment classification on polarity reviews: an empirical study using rating-based features. In Proceedings of the 5th workshop on computational approaches to subjectivity, sentiment and social media analysis (pp. 128-135). |
[16] | Tiwari, P., Mishra, B. K., Kumar, S., & Kumar, V. (2017). Implementation of n-gram methodology for rotten tomatoes review dataset sentiment analysis. International Journal of Knowledge Discovery in Bioinformatics (IJKDB), 7 (1), 30-41. |
[17] | Arun, K., Srinagesh, A., & Ramesh, M. (2017). Twitter Sentiment Analysis on Demonetization tweets in India Using R language. International Journal of Computer Engineering in Research Trends, 4 (6), 252-258. |
[18] | Anta, A. F., Chiroque, L. N., Morere, P., & Santos, A. (2013). Sentiment analysis and topic detection of Spanish tweets: A comparative study of of NLP techniques. Procesamiento del lenguaje natural, 50, 45-52. |
[19] | Basha, S. M., Zhenning, Y., Rajput, D. S., Iyengar, N., & Caytiles, D. R. (2017). Weighted Fuzzy Rule Based Sentiment Prediction Analysis on Tweets. International Journal of Grid and Distributed Computing, 10 (6), 41-54. |
[20] | Alomari, K. M., ElSherif, H. M., & Shaalan, K. (2017, June). Arabic Tweets Sentimental Analysis Using Machine Learning. In International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (pp. 602-610). Springer, Cham. |
APA Style
Swati Redhu, Sangeet Srivastava, Barkha Bansal, Gaurav Gupta. (2018). Sentiment Analysis Using Text Mining: A Review. International Journal on Data Science and Technology, 4(2), 49-53. https://doi.org/10.11648/j.ijdst.20180402.12
ACS Style
Swati Redhu; Sangeet Srivastava; Barkha Bansal; Gaurav Gupta. Sentiment Analysis Using Text Mining: A Review. Int. J. Data Sci. Technol. 2018, 4(2), 49-53. doi: 10.11648/j.ijdst.20180402.12
AMA Style
Swati Redhu, Sangeet Srivastava, Barkha Bansal, Gaurav Gupta. Sentiment Analysis Using Text Mining: A Review. Int J Data Sci Technol. 2018;4(2):49-53. doi: 10.11648/j.ijdst.20180402.12
@article{10.11648/j.ijdst.20180402.12, author = {Swati Redhu and Sangeet Srivastava and Barkha Bansal and Gaurav Gupta}, title = {Sentiment Analysis Using Text Mining: A Review}, journal = {International Journal on Data Science and Technology}, volume = {4}, number = {2}, pages = {49-53}, doi = {10.11648/j.ijdst.20180402.12}, url = {https://doi.org/10.11648/j.ijdst.20180402.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijdst.20180402.12}, abstract = {Text mining and sentiment analysis have received huge attention recently, specially because of the availability of vast data in form of text available on social media, e-commerce websites, blogs and other similar sources. This data is usually unstructured and contains noise, therefore the task of gaining information is complex and expensive. There is a growing need for developing different methodologies and models for efficiently processing the texts and extracting apt information. One way to extract information is text mining and sentiment analysis, that include: data acquisition, data pre-processing and normalization, feature extraction and representation, labelling, and finally the application of various Natural Language Processing (NLP) and machine learning algorithms. This paper provides an overview of different methods used in text mining and sentiment analysis elaborating on all subtasks.}, year = {2018} }
TY - JOUR T1 - Sentiment Analysis Using Text Mining: A Review AU - Swati Redhu AU - Sangeet Srivastava AU - Barkha Bansal AU - Gaurav Gupta Y1 - 2018/06/26 PY - 2018 N1 - https://doi.org/10.11648/j.ijdst.20180402.12 DO - 10.11648/j.ijdst.20180402.12 T2 - International Journal on Data Science and Technology JF - International Journal on Data Science and Technology JO - International Journal on Data Science and Technology SP - 49 EP - 53 PB - Science Publishing Group SN - 2472-2235 UR - https://doi.org/10.11648/j.ijdst.20180402.12 AB - Text mining and sentiment analysis have received huge attention recently, specially because of the availability of vast data in form of text available on social media, e-commerce websites, blogs and other similar sources. This data is usually unstructured and contains noise, therefore the task of gaining information is complex and expensive. There is a growing need for developing different methodologies and models for efficiently processing the texts and extracting apt information. One way to extract information is text mining and sentiment analysis, that include: data acquisition, data pre-processing and normalization, feature extraction and representation, labelling, and finally the application of various Natural Language Processing (NLP) and machine learning algorithms. This paper provides an overview of different methods used in text mining and sentiment analysis elaborating on all subtasks. VL - 4 IS - 2 ER -