In this paper, we introduce the algebraic structure of Z2 (Z2+uZ2) (Z2+uZ2+u2Z2) -additive codes and Z2 (Z2+uZ2) (Z2+uZ2+u2Z2) -additive cyclic codes. Compared to the Z2Z4Z8-additive codes, the Gray image of any Z2 (Z2+uZ2) (Z2+uZ2+u2Z2) -linear code will always be a linear binary code. Therefore, we consider the Z2 (Z2+uZ2) (Z2+uZ2+u2Z2) -additive cyclic codes as a (Z2+uZ2+u2Z2) [x] -submodule of Z2α×(Z2+uZ2)β×(Z2+uZ2+u2Z2)θ. We give the definition of Z2 (Z2+uZ2) (Z2+uZ2+u2Z2) -additive codes with generator matrices and parity-check matrices. Furthermore, we give the fundamental result on considering their additive cyclic codes with generator polynomials and spanning sets.
Published in | Engineering Mathematics (Volume 3, Issue 2) |
DOI | 10.11648/j.engmath.20190302.11 |
Page(s) | 30-39 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2019. Published by Science Publishing Group |
Additive Codes, Cyclic Codes, Minimal Generating Set
[1] | Hammons A. R., Kumar P. V., Calderbank A. R., Sloane N. J. A., Sol P., The Z4-linearity of Kerdock, Preparata, Goethals and related codes. IEEE Transactions on Information Theory. 40 (2), 301-319, 1994. |
[2] | Dougherty S. T., Fernndez-Crdoba C., Codes over Z2k, Gray Map Self-Dual Codes Adv. Math. Commun. 5 (4), 571-588, 2011. |
[3] | Greferath M., Schmidt S. E., Gray isometries for finite chain rings and a nonlinear ternary (36, 3/sup 12/, 15) code, IEEE Transactions on Information Theory. 45 (7), 2522–2524, 1999. |
[4] | Honold T., Landjev I., Linear Codes over Finite Chain Rings, JOURNAL OF COMBINATORICS. 7 (1), R11–R11, 2001. |
[5] | Delsarte P., Levenshtein V. I., Association schemes and coding theory, IEEE Transactions on Information Theory. 44 (6), 2477–2504, 1998. |
[6] | Borges J., Fernndez-Crdoba C., Pujol J., Rif J., Villanueva M., Z2Z4-Linear codes: generator matrices and duality. Designs, Codes Cryptogr. 54 (2), 167–179, 2010. |
[7] | Abualrub T., Siap I. and Aydin N., Z2Z4-Additive cyclic codes, IEEE Transactions on Information Theory. 60 (3), 1508–1514, 2014. |
[8] | Aydogudu I., Abualrub T. and Siap I., On Z2Z2 [u] -additive codes, Int. J. Comput. Math. 92 (9), 1806C-1814, 2015. |
[9] | Borges J., Fernndez-Crdoba C., Ten-Valls R., Z2Z4-Additive cyclic codes, generator polynomials and dual codes, IEEE Transactions on Information Theory. 62 (11), 6348–6354, 2016. |
[10] | Aydogdu I., Gursoy F., Z2Z4Z8-Cyclic codes, Journal of Applied Mathematics andm Computing. 60 (1–2), 327–341, 2019. |
[11] | Joaquim B., Dougherty S. T., Cristina F. C., et. al., Binary Images of Z2Z4-Additive cyclic codes, IEEE Transactions on Information Theory. 64 (12), 7551–7556, 2018. |
[12] | Ismail A., Taher A., The structure of Z2Z4s-additive cyclic codes, Discrete Mathematics, Algorithms and Applications. 10 (04), 1850048, 2018. |
[13] | Wan Z. X., Quaternary codes, World Scientific. 8, 1997. |
[14] | Abualrub T. and Siap I., Cyclic codes over the rings Z2+uZ2 and Z2+uZ2+u2Z2 , Designs Codes and Cryptography. 42 (3), 273–287, 2007. |
[15] | Macwilliams F. J., Sloane N. J. A., The theory of error-correcting codes, Elsevier. 16, 1977. |
APA Style
Zhihui Li. (2019). Z2 (Z2+uZ2)(Z2+uZ2+u2Z2)-Additive Cyclic Codes. Engineering Mathematics, 3(2), 30-39. https://doi.org/10.11648/j.engmath.20190302.11
ACS Style
Zhihui Li. Z2 (Z2+uZ2)(Z2+uZ2+u2Z2)-Additive Cyclic Codes. Eng. Math. 2019, 3(2), 30-39. doi: 10.11648/j.engmath.20190302.11
AMA Style
Zhihui Li. Z2 (Z2+uZ2)(Z2+uZ2+u2Z2)-Additive Cyclic Codes. Eng Math. 2019;3(2):30-39. doi: 10.11648/j.engmath.20190302.11
@article{10.11648/j.engmath.20190302.11, author = {Zhihui Li}, title = {Z2 (Z2+uZ2)(Z2+uZ2+u2Z2)-Additive Cyclic Codes}, journal = {Engineering Mathematics}, volume = {3}, number = {2}, pages = {30-39}, doi = {10.11648/j.engmath.20190302.11}, url = {https://doi.org/10.11648/j.engmath.20190302.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.engmath.20190302.11}, abstract = {In this paper, we introduce the algebraic structure of Z2 (Z2+uZ2) (Z2+uZ2+u2Z2) -additive codes and Z2 (Z2+uZ2) (Z2+uZ2+u2Z2) -additive cyclic codes. Compared to the Z2Z4Z8-additive codes, the Gray image of any Z2 (Z2+uZ2) (Z2+uZ2+u2Z2) -linear code will always be a linear binary code. Therefore, we consider the Z2 (Z2+uZ2) (Z2+uZ2+u2Z2) -additive cyclic codes as a (Z2+uZ2+u2Z2) [x] -submodule of Z2α×(Z2+uZ2)β×(Z2+uZ2+u2Z2)θ. We give the definition of Z2 (Z2+uZ2) (Z2+uZ2+u2Z2) -additive codes with generator matrices and parity-check matrices. Furthermore, we give the fundamental result on considering their additive cyclic codes with generator polynomials and spanning sets.}, year = {2019} }
TY - JOUR T1 - Z2 (Z2+uZ2)(Z2+uZ2+u2Z2)-Additive Cyclic Codes AU - Zhihui Li Y1 - 2019/10/25 PY - 2019 N1 - https://doi.org/10.11648/j.engmath.20190302.11 DO - 10.11648/j.engmath.20190302.11 T2 - Engineering Mathematics JF - Engineering Mathematics JO - Engineering Mathematics SP - 30 EP - 39 PB - Science Publishing Group SN - 2640-088X UR - https://doi.org/10.11648/j.engmath.20190302.11 AB - In this paper, we introduce the algebraic structure of Z2 (Z2+uZ2) (Z2+uZ2+u2Z2) -additive codes and Z2 (Z2+uZ2) (Z2+uZ2+u2Z2) -additive cyclic codes. Compared to the Z2Z4Z8-additive codes, the Gray image of any Z2 (Z2+uZ2) (Z2+uZ2+u2Z2) -linear code will always be a linear binary code. Therefore, we consider the Z2 (Z2+uZ2) (Z2+uZ2+u2Z2) -additive cyclic codes as a (Z2+uZ2+u2Z2) [x] -submodule of Z2α×(Z2+uZ2)β×(Z2+uZ2+u2Z2)θ. We give the definition of Z2 (Z2+uZ2) (Z2+uZ2+u2Z2) -additive codes with generator matrices and parity-check matrices. Furthermore, we give the fundamental result on considering their additive cyclic codes with generator polynomials and spanning sets. VL - 3 IS - 2 ER -