A widespread but internationally inconsistent phenomenon is the underrepresentation of girls in programs aimed at supporting mathematical giftedness from primary-school age. It contradicts the consensus that girls and boys have equal potentials independent of certain domains. According to current giftedness models that emphasize the significance of both cognitive and co-cognitive parameters, motivational constructs are one important factor to consider in the context of identification and support. For instance, existing studies indicate that girls and boys who were identified as being mathematically gifted, as well as boys who were not, often show more advantageous mathematical self-concepts and attributions than girls who were not identified as such. The obvious question is whether such empirical indicators can also be found in similar motivational constructs, since altogether they might provide deeper indications of the significance of motivational factors as determinants to identify mathematical giftedness from a gender perspective. This article investigates this question by focusing on mathematics self-efficacy, interest and attitudes in a quantitative cross-sectional questionnaire study with children at primary-school age. It did so by comparing frequent characteristics of four groups: boys and girls identified as being mathematically gifted, as well as boys and girls who were not. Against the background of available findings on other motivational factors as well as various research results on self-efficacy, interest, and attitudes, the hypotheses were obvious that girls and boys who were identified as being mathematically gifted, as well as boys who were not, often show more advantageous mathematics self-efficacy, interest, and attitudes than girls who were not identified as such. Summarized, the study’s results confirm these hypotheses in principle. Thus, the findings can help to explain the phenomenon of the rare identification of girls’ mathematical giftedness, because teachers, for example, might perceive boys’ potentials primarily. As a consequence, the development of advantageous characteristics of mathematics self-efficacy, interests and attitudes independent of questions as to the identification of mathematical giftedness seems to be important especially with girls.
Published in | Education Journal (Volume 8, Issue 5) |
DOI | 10.11648/j.edu.20190805.16 |
Page(s) | 211-225 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2019. Published by Science Publishing Group |
Mathematical Giftedness, Gender, Self-Efficacy, Interest, Attitudes, Motivation
[1] | Quaiser-Pohl, C. (2012). Mädchen und Frauen in MINT: Ein Überblick. In H. Stöger, A. Ziegler, & M. Heilemann (eds.), Mädchen und Frauen in MINT. Bedingungen von Geschlechtsunterschieden und Interventionsmöglichkeiten (pp. 13-39). Berlin: Lit. |
[2] | Abele, A. E., & Lenzner, A. (2004). Frauen heute im Mathematikstudium international. In A. E. Abele, H. Neunzert, & R. Tobies (eds.), Traumjob Mathematik. Berufswege von Frauen und Männern in der Mathematik (pp. 147-157). Basel: Birkhäuser. |
[3] | UNESCO [United Nations Educational, Scientific and Cultural Organization] (ed.). (2015). Women in science. Quarterly thematic publication, 1. http://unesdoc.unesco.org/images/0023/002351/235155E.pdf.Accessed 17 April 2016. |
[4] | Mattson, L. (2013). Tracking mathematical giftedness in an egalitarian context. Gothenburg: Chalmers University of Technology and University of Gothenburg. |
[5] | Bauersfeld, H., & Kießwetter, K. (eds.). (2006). Wie fördert man mathematisch besonders befähigte Kinder? Ein Buch aus der Praxis für die Praxis. Offenburg: Mildenberger. |
[6] | BMBF [Bundesministerium für Bildung und Forschung; German Federal Ministry of Education and Research] (ed.). (2015). Begabte Kinder finden und fördern. Ein Ratgeber für Eltern, Erzieherinnen und Erzieher, Lehrerinnen und Lehrer. Berlin: BMBF, Referat Übergreifende Fragen der Nachwuchsförderung, Begabtenförderung. https://www.bmbf.de/pub/Begabte_Kinder_finden_und_foerdern. pdf. Accessed 08 September 2018. |
[7] | Endepohls-Ulpe, M. (2012). Begabte Mädchen und Frauen. In H. Stöger, A. Ziegler, & M. Heilemann (eds.), Mädchen und Frauen in MINT. Bedingungen von Geschlechtsunterschieden und Interventionsmöglichkeiten (pp. 103-132). Berlin: Lit. |
[8] | Veber, M. (2015). Potenzialorientierung - Weg und Ziel inklusiver Bildung. Schulpädagogik heute, 12, 1-22. |
[9] | Sliwka, A. (2012). Diversität als Chance und als Ressource in der Gestaltung wirksamer Lernprozesse. In K. Fereidooni (ed.), Das interkulturelle Lehrerzimmer. Perspektiven neuer deutscher Lehrkräfte auf den Bildungs- und Integrationsdiskurs (pp. 169-176). Wiesbaden: Springer VS. |
[10] | Reiss, K., Sälzer, C., Schiepe-Tiska, A., Klieme, E., & Köller, O. (eds.). (2016). PISA 2015. Eine Studie zwischen Kontinuität und Innovation. Münster: Waxmann. |
[11] | Bos, W., Wendt, H., Köller, O., & Selter, C. (eds.). (2012). TIMSS 2011. Mathematische und naturwissenschaftliche Kompetenzen von Grundschulkindern in Deutschland im internationalen Vergleich. Münster: Waxmann. |
[12] | Hyde, J. S. (2014). Gender similarities and differences. Annual Review of Psychology, 65, 373-98. |
[13] | Lindberg, S. M., Hyde, J. S., Petersen, J. L., & Linn, M. C. (2010). New trends in gender and mathematics performance: a meta-analysis. Psychological Bulletin, 136 (6), 1123-1135. |
[14] | Ma, X. (2010). Gender differences in mathematics achievement. Evidence from regional and international student assessments. In H. J. Forgasz, J. Rossi Becker, K. -H. Lee, & O. B. Steinthorsdottir (eds.), International perspectives on gender and mathematics education (pp. 225-248). Charlotte, NC: Information Age Publishing. |
[15] | Benölken, R. (2014). Begabung, Geschlecht und Motivation. Erkenntnisse zur Bedeutung von Selbstkonzept, Attribution und Interessen als Bedingungsfaktoren für die Identifikation mathematischer Begabungen. Journal für Mathematik-Didaktik, 35 (1), 129-158. |
[16] | Benölken, R. (2015). The impact of mathematics interest and attitudes as determinants in order to identify girls’ mathematical talent. Proceedings of the Ninth Conference of the European Society for Research in Mathematics Education (pp. 970-976). Prague, Czech Republic: Charles University and ERME. |
[17] | Benölken, R. (2017). Begabung, Geschlecht und Motivation. Erkenntnisse zur Bedeutung motivationaler Komponenten als Bedingungsfaktoren für die Entwicklung mathematischer Begabungen. mathematica didactica, 40, 55-72. |
[18] | Benölken, R. (2011). Mathematisch begabte Mädchen. Untersuchungen zu geschlechts- und begabungsspezifischen Besonderheiten im Grundschulalter. Münster: WTM. |
[19] | Fuchs, M., & Käpnick, F. (2009). Mathe für kleine Asse. Empfehlungen zur Förderung mathematisch interessierter und begabter Kinder im 3. und 4. Schuljahr (vol. 2). Berlin: Cornelsen. |
[20] | Brunner, M., Krauss, S., & Martignon, L. (2011). Eine alternative Modellierung von Geschlechtsunterschieden in Mathematik. Journal für Mathematik-Didaktik, 32 (2), 179-204. |
[21] | Eccles, J., Adler, T. F., Futterman, R., Goff, S. B., Kaczala, C. M., Meece, J., & Midgley, C. (1983). Expectancies, values and academic behaviors. In J. T. Spence (ed.), Achievement and achievement motives (pp. 26-43). San Francisco, CA: Freeman. |
[22] | Käpnick, F., & Benölken, R. (2015). Ein konzeptioneller Ansatz zur Kennzeichnung mathematisch begabter Kinder und Möglichkeiten ihrer Diagnostik und Förderung aus fachdidaktischer Perspektive. Journal für Begabtenförderung, 2, 23-38. |
[23] | Leikin, R., & Sriraman, B. (eds.). (2017). Creativity and giftedness-Interdisciplinary perspectives from mathematics and beyond. Switzerland: Springer. |
[24] | Bauersfeld, H. (2013). Die prinzipielle Unschärfe unserer Begriffe. In T. Fritzlar & F. Käpnick (eds.), Mathematische Begabungen. Denkansätze zu einem komplexen Themenfeld aus verschiedenen Perspektiven (pp. 105-129). Münster: WTM. |
[25] | Lucito, L. J. (1964). Gifted children. In L. M. Dunn (ed.), Exceptional children in the schools (pp. 179-238). New York, NY: Holt, Rinehart and Winston. |
[26] | Feldhusen, J. F., & Jarwan, F. A. (1993). Identification of gifted and talented youth for educational programs. In K. A. Heller, F. J. Mönks, & A. H. Passow (eds.), International handbook of research and development of giftedness and talent (pp. 512-527). Oxford: Pergamon. |
[27] | Gagné, F. (2000). Understanding the complex choreography of talent development through DMGT-based analysis. In K. A. Heller, F. J. Mönks, R. J. Sternberg, & R. F. Subotnik (eds.), International handbook of giftedness and talent (2nd ed.; pp. 67-79). Amsterdam: Elsevier. |
[28] | iPEGE [International Panel of Experts for Gifted Education] (ed.). (2009). Professionelle Begabtenförderung. Salzburg: özbf. |
[29] | Kießwetter, K. (1985). Die Förderung von mathematisch besonders begabten und interessierten Schülern - ein bislang vernachlässigtes sonderpädagogisches Problem. Mathematisch-naturwissenschaftlicher Unterricht, 39 (5), 300-306. |
[30] | Käpnick, F. (1998). Mathematisch begabte Kinder. Frankfurt a. M.: Peter Lang. |
[31] | Sheffield, L. (2003). Extending the challenge in mathematics. Thousand Oaks, CA: Corwin Press. |
[32] | Benölken, R. (2015). “Mathe für kleine Asse” - An enrichment project at the University of Münster. Proceedings of the 9th Mathematical Creativity and Giftedness International Conference (pp. 140-145). Sinaia, Romania: MCG. |
[33] | Aßmus, D. (2017). Mathematische Begabung im frühen Grundschulalter unter besonderer Berücksichtigung kognitiver Merkmale. Münster: WTM. |
[34] | Schindler, M., & Rott, B. (2017). Networking theories on giftedness - What we can learn from synthesizing Renzulli’s domain general and Krutetskii’s mathematics-specific theory. Education Sciences. https://doi.org/10.3390/educsci7010006 |
[35] | Fritzlar, T. (2013). Robert - Zur Entwicklung mathematischer Expertise bei Kindern und Jugendlichen. In T. Fritzlar & F. Käpnick (eds.), Mathematische Begabungen. Denkansätze zu einem komplexen Themenfeld aus verschiedenen Perspektiven (pp. 41-59). Münster: WTM. |
[36] | Nolte, M. (2012). Challenging math problems for mathematically gifted children. In Proceedings of the 7th Mathematical Creativity and Giftedness International Conference (pp. 27-45). Busan, Republic of Korea: MCG. |
[37] | Käpnick, F. (2008). “Mathe für kleine Asse”. Das Münsteraner Konzept zur Förderung mathematisch begabter Kinder. In M. Fuchs & F. Käpnick (eds.), Mathematisch begabte Kinder. Eine Herausforderung für Schule und Wissenschaft (pp. 138-148). Berlin: Lit. |
[38] | Bandura, A. (1997). Self-efficacy. The exercise of control. New York, NY: Freeman. |
[39] | Köller, O., & Möller, J. (2010). Selbstwirksamkeit. In D. H. Rost (ed.), Handwörterbuch Pädagogische Psychologie (4th ed.; pp. 767-774). Weinheim: Beltz. |
[40] | Hsieh, P.-H. P., & Schallert, D. L. (2008). Implications from self-efficacy and attribution theories for an understanding of undergraduates’ motivation in a foreign language course. Contemporary Educational Psychology, 33 (4), 513-532. |
[41] | Liem, A. D., Lau, S., & Nie, Y. (2008). The role of self-efficacy, task value, and achievement goals in predicting learning strategies, task disengagement, peer relationship, and achievement outcome. Contemporary Educational Psychology, 33 (4), 486-512. |
[42] | Bong, M., & Skaalvik, E. M. (2003). Academic self-concept and self-efficacy: How different are they really? Educational Psychology Review, 15 (1), 1-40. |
[43] | Zimmerman, B. (2000). Self-efficacy: An essential motive to learn. Contemporary Educational Psychology, 25, 82-91. |
[44] | Ercikan, K., McCreith, T., & Lapointe, V. (2005). Factors associated with mathematics achievement and participation in advanced mathematics courses: an examination of gender differences from an international perspective. School Science and Mathematics, 105 (1), 5-17. |
[45] | Betz, N. E., & Hackett, G. (1986). Applications of self-efficacy theory to understanding career choice behavior. Journal of Social and Clinical Psychology, 4 (3), 279-289. |
[46] | McConney, A., & Perry, L. (2010). Socioeconomic status, self-efficacy, and mathematics achievement in Australia: a secondary analysis. Educational Research for Policy and Practice, 9 (2), 77-91. |
[47] | Hannover, B. (1991). Zur Unterrepräsentanz von Mädchen in Naturwissenschaften und Technik: Psychologische Prädikatoren der Fach-und Berufswahl. Zeitschrift für Pädagogische Psychologie, 5 (3), 169-186. |
[48] | Stipek, D. J., & Gralinski, J. H. (1991). Gender differences in children’s achievement-related beliefs and emotional responses to success and failure in mathematics. Journal of Educational Psychology, 83 (3), 361-371. |
[49] | Geist, E. A., & King, M. (2008). Different, not better: Gender differences in mathematics learning and achievement. Journal of Instructional Psychology, 35 (1), 43-53. |
[50] | Fennema, E., & Sherman, J. (1977). Sex-related differences in mathematics achievement, spatial visualization and affective factors. American Educational Research Journal, 14 (1), 51-71. |
[51] | Pajares, F., & Graham, L. (1999). Self-Efficacy, motivation constructs and mathematics performance of entering middle school students. Contemporary Educational Psychology, 24 (2), 124-139. |
[52] | Pajares, F., & Miller, M. D. (1994). Role of self-efficacy and self-concept beliefs in mathematical problem solving. Journal of Educational Psychology, 86 (2), 193-203. |
[53] | OECD [Organisation for Economic Co-operation and Development] (ed.). (2007). PISA 2006 Schulleistungen im internationalen Vergleich. Naturwissenschaftliche Kompetenzen für die Welt von morgen. München: Bertelsmann. http://www.oecd.org/pisa/39728657.pdf. Accessed 14 April 2016. |
[54] | Pajares, F. (2003). Self-efficacy beliefs, motivation, and achievement in writing: a review of the literature. Reading & Writing Quarterly, 19 (2), 139-158. |
[55] | Huang, C. (2012). Gender differences in academic self-efficacy: a meta-analysis. European Journal of Psychology of Education, 28 (1), 1-35. |
[56] | Else-Quest, N. M., Hyde J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: a meta-analysis. Psychological Bulletin, 136, 103-27. |
[57] | Blossfeld, H. -P., Bos, W., Hannover, B., Lenzen, D., Müller-Böling, D., Prenzel, M., & Wößmann, L. (2009). Geschlechterdifferenzen im Bildungssystem. Jahresgutachten 2009. Wiesbaden: VS. |
[58] | Prenzel, M., Baumert, J., Blum, W., Lehmann, R., Leutner, D. Neubrand, M., Pekrun, R., Rolff, H. -G., Rost, J., & Schiefele, U. (2004). PISA 2003. Der Bildungsstand der Jugendlichen in Deutschland-Ergebnisse des zweiten internationalen Vergleichs. Münster: Waxmann. |
[59] | Schütz, C. (2000). Leistungsbezogene Kognitionen. In D. H. Rost (ed.), Hochbegabte und hochleistende Jugendliche. Neue Ergebnisse aus dem Marburger Hochbegabtenprojekt (pp. 303-337). Münster: Waxmann. |
[60] | Rost, D. H., & Wetzel, C. (2000). Proaktive Selbststeuerung, Kompetenzwahrnehmung, Erfolgsorientierung. In D. H. Rost (ed.), Hochbegabte und hochleistende Jugendliche. Neue Ergebnisse aus dem Marburger Hochbegabtenprojekt (pp. 279-302). Münster: Waxmann. |
[61] | Junge, M. E., & Dretzke, B. J. (1995). Mathematical self-efficacy, gender differences in gifted/talented adolescents. Gifted Child Quarterly, 39 (1), 22-28. |
[62] | Todt, E. (1986). Interesse. In W. Sarges & R. Fricke (eds.), Psychologie für Erwachsenenbildung/Weiterbildung. Ein Handbuch in Grundbegriffen (pp. 272-277). Göttingen: Hogrefe. |
[63] | Prenzel, M., Krapp, A., & Schiefele, H. (1986). Grundzüge einer pädagogischen Interessentheorie. Zeitschrift für Pädagogik, 32 (2), 163-173. |
[64] | Krapp, A. (2005). Die Bedeutung von Interesse für den Grundschulunterricht. Grundschulunterricht, 52 (10), 4-8. |
[65] | Krapp, A. (2010). Interesse. In D. H. Rost (ed.), Handwörterbuch Pädagogische Psychologie (4th ed.; pp. 311-323). Weinheim: Beltz. |
[66] | Hellmich, F. (2006). Interessen, Selbstkonzepte und Kompetenzen. Untersuchungen zum Lernen von Mathematik bei Grundschulkindern. Oldenburg: University of Oldenburg. |
[67] | Bikner-Ahsbahs, A. (2005). Mathematikinteresse zwischen Subjekt und Situation. Theorie interessendichter Situationen. Baustein für eine mathematikdidaktische Interessentheorie. Hildesheim: Franzbecker. |
[68] | Eichler, K. -P. (2010). Fördern mathematisch begabter Kinder und Entwicklung mathematischer Interessen bei allen Kindern. In T. Fritzlar & F. Heinrich (eds.), Kompetenzen mathematisch begabter Kinder erkunden und fördern (pp. 127-142). Offenburg: Mildenberger. |
[69] | Hannover, B. (2008). Vom biologischen zum psychologischen Geschlecht: Die Entwicklung von Geschlechtsunterschieden. In A. Renkl (ed.), Lehrbuch Pädagogische Psychologie (pp. 339-388). Bern: Huber. |
[70] | Pruisken, C. (2005). Interessen und Hobbys hochbegabter Grundschulkinder. Formeln statt Fußball? Münster: Waxmann. |
[71] | Hoberg, K., & Rost, D. H. (2000). Interessen. In D. H. Rost (ed.), Hochbegabte und hochleistende Jugendliche. Neue Ergebnisse aus dem Marburger Hochbegabtenprojekt (pp. 339-365). Münster: Waxmann. |
[72] | Perleth, C., & Sierwald, W. (1992). Entwicklungs- und Leistungsanalysen zur Hochbegabung. In K. A. Heller (ed.), Hochbegabung im Kindes- und Jugendalter (pp. 166-350). Göttingen: Hogrefe. |
[73] | Fromme, J., Meder, N., & Vollmer, N. (2000). Computerspiele in der Kinderkultur. Opladen: Leske+Budrich. |
[74] | Fölling-Albers, M. (1995). Interessen von Grundschulkindern. Ein Überblick über Schwerpunkte und Auslöser. Grundschule, 27 (6), 24-26. |
[75] | Watt, H. M. G. (2004). Development of adolescents’ self-perceptions, values, and task perceptions according to gender and domain in 7th through 11th grade Australian students. Child Development, 75 (5), 1556-1574. |
[76] | Keller, C. (1998). Geschlechterdifferenzen in der Mathematik: Prüfung von Erklärungsansätzen. Eine mehrebenenanalytische Untersuchung im Rahmen der “Third International Mathematics and Science Study”. Zürich: Zentralstelle der Studentenschaft. |
[77] | OECD [Organisation for Economic Co-operation and Development] (ed.) (2016). PISA 2015 Ergebnisse (Band I): Exzellenz und Chancengerechtigkeit in der Bildung. PISA, Bertelsmann. http://dx.doi.org/10.1787/9789264267879-de. Accessed 21 September 2017. |
[78] | Lubinski, D., Benbow, C. P., & Sanders, C. E. (1993). Reconceptualizing gender differences in achievement among the gifted. In K. A. Heller, F. J. Mönks, & A. H. Passow (eds.), International handbook of research and development of giftedness and talent (pp. 693-707). Oxford: Pergamon. |
[79] | Kasten, H. (2010). Geschlechtsunterschiede. In D. H. Rost (ed.), Handwörterbuch Pädagogische Psychologie (4th ed.; pp. 234-241). Weinheim: Beltz. |
[80] | Kerr, B. (2000). Guiding Gifted Girls and Young Women. In K. A. Heller, F. J. Mönks, R. J. Sternberg, & R. F. Subotnik (eds.), International handbook of giftedness and talent (2nd ed.; pp. 649-657). Amsterdam: Elsevier. |
[81] | Frenzel, A. C., Goetz, T., Pekrun, R., & Watt, H. M. G. (2010). Development of mathematics interest in adolescence: influences of gender, family, and school context. Journal of Research in Adolescence, 20 (2), 507-537. |
[82] | Fredriks, J. A., & Eccles, J. (2002). Children’s competence and value beliefs from childhood to adolescence: Growth trajectories in two male-sex-typed domains. Developmental Psychology, 38 (4), 519-533. |
[83] | Bohner, G. (2003). Einstellungen. In W. Stroebe, K. Jonas, & M. Hewstone (eds.), Sozialpsychologie. Eine Einführung (4th ed.; pp. 265-315). Berlin: Springer. |
[84] | Herkner, W. (1993). Lehrbuch Sozialpsychologie (5th ed.). Bern: Huber. |
[85] | Shavitt, S. (1989). Operationalizing functional theories of attitude. In A. R. Pratkanis, S. Breckler, & A. G. Greenwald (eds.), Attitude structure and function (pp. 311-337). Hillsdale, NJ: Lawrence Erlbaum. |
[86] | Wicker, A. W. (1969). Attitudes versus actions: the relationship of verbal and overt behavioral responses to attitude object. Journal of Social Issues, 25 (4), 41-78. |
[87] | Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: an introduction to theory and research. Reading, MA: Addison-Wesley. |
[88] | Fischer, L., & Wiswede, G. (2002). Grundlagen der Sozialpsychologie (2nd ed.). München: R. Oldenbourg. |
[89] | Aronson, E., Wilson, T. D., & Akert, R. M. (2004). Sozialpsychologie (4th ed.). München: Pearson. |
[90] | Ma, X., & Xu, J. (2004). Determining the causal ordering between attitude towards mathematics and achievement in mathematics. American Journal of Education, 110 (3), 256-280. |
[91] | Hyde, J. S., Fennema, E., Ryan, M., Frost, L. A., & Hopp, C. (1990). Gender comparisons of mathematics attitudes and affect: a meta-analysis. Psychology of Women Quarterly, 14 (3), 299-324. |
[92] | Gaspard, H., Dicke, A. -L., Flunger, B., Schreier, B., Häfner, I., Trautwein, U., & Nagengast, B. (2015). More value through greater differentiation: Gender differences in value beliefs about math. Journal of Educational Psychology, 107 (3), 663-677. |
[93] | Wang, M. -T., & Degol, J. (2013). Motivational pathways to STEM career choices: using expectancy-value perspective to understand individual and gender differences in STEM fields. Developmental Review, 33 (4), 304-340. |
[94] | Wieczerkowski, W., & Jansen, J. (1990). Mädchen und Mathematik: Geschlechtsunterschiede in Leistung und Wahlverhalten. In W. Wieczerkowski & T. Prado (eds.), Hochbegabte Mädchen (pp. 134-151). Bad Honnef: Bock. |
[95] | Brotman, J. S., & Moore, F. M. (2008). Girls and science: A review of four themes in the science education literature. Journal of Research in Science Teaching, 45 (9), 971-1002. |
[96] | Newton, L. D., & Newton, D. P. (1998). Primary children’s conceptions of science and the scientists: Is the impact of a National Curriculum breaking down the stereotype? International Journal of Science Education, 20 (9), 1137-1149. |
[97] | Cvencek, D., Meltzoff, A. N., & Greenwald, A. G. (2011). Math-gender stereotypes in elementary school children. Child Development, 82 (3), 766-779. |
[98] | Nagy, G., Trautwein, U., Baumert, J., Köller, O., & Garrett, J. (2006). Gender and course selection in upper secondary education: Effects of academic self-concept and intrinsic value. Educational Research and Evaluation, 12 (4), 323-345. |
[99] | Raminirez, G., Gunderson, E. A., Levine, S. C., & Beilock, S. L. (2012). Math anxiety, working memory, and math achievement in early elementary school. Journal of Cognition and Development, 14 (2), 187-202. |
[100] | Hembree, R. (1990). The nature, effects, and relief of mathematics anxiety. Journal for Research in Mathematics Education, 21, 33-46. |
[101] | Harari, R. R., Vukovic, R. K., & Bailey, S. P. (2013). Mathematics anxiety in young children: an exploratory study. The Journal of Experimental Education, 81 (4), 538-555. |
[102] | Schiepe-Tiska, A., & Schmidtner, S. (2013). Mathematikbezogene emotionale und motivationale Orientierungen. Einstellungen und Verhaltensweisen von Jugendlichen in PISA 2012. In M. Prenzel, C. Sälzer, E. Klieme, & O. Köller (eds.), PISA 2012. Fortschritte und Herausforderungen in Deutschland (pp. 99-122). Münster: Waxmann. |
[103] | Benölken, R. (2014). The significance of attitudes towards mathematics as determinants for the identification of girls’ mathematical talent - a pilot-study. Proceedings of the 2nd Human and Social Sciences at the Common Conference (pp. 174-178). Zilina, Slovak Republic: EDIS-Publishing Institution of the University of Zilina. |
[104] | Jerusalem, M., & Satow, L. (1999). Schulbezogene Selbstwirksamkeitserwartung. In R. Schwarzer & M. Jerusalem, (eds.), Skalen zur Erfassung von Lehrer- und Schülermerkmalen. Dokumentation der psychometrischen Verfahren im Rahmen der wissenschaftlichen Begleitung des Modellversuchs Selbstwirksame Schulen (pp. 15-16). Berlin: Freie Universität Berlin. http://www.psyc.de/skalendoku.pdf. Accessed 12 April 2016. |
[105] | OECD [Organisation for Economic Co-operation and Development] (ed.). (2012). Internationaler Schülerfragebogen PISA 2012. https://www.bifie.at/system/files/dl/pisa12_internationaler_nationaler_schuelerfragebogen.pdf. Accessed 14 April 2016. |
[106] | IAEEA [International Association for the Evaluation of Educational Achievement] (ed.). (2011). PIRLS & TIMSS 2011 Schülerfragebogen. https://www.bifie.at/system/files/dl/Sch%C3%BClerfragebogen.pdf. Accessed 14 April 2016. |
[107] | Cohen, J. (1988). Statistical Power for the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum. |
[108] | Nachtigall, C., & Wirtz, M. (2006). Wahrscheinlichkeitsrechnung und Inferenzstatistik. Statistische Methoden für Psychologen Teil 2 (4th ed.). Weinheim: Juventa. |
[109] | Hatzinger, R., & Nagel, H. (2009). PASW Statistics. Statistische Methoden und Fallbeispiele. München: Pearson Studium. |
[110] | Eysenck, H. J. (2004). Die IQ-Bibel. Intelligenz verstehen und messen. Stuttgart: Klett-Cotta. |
[111] | Stapf, A. (2006). Hochbegabte Kinder. Persönlichkeit, Entwicklung, Förderung (3rd ed.). München: Beck. |
[112] | Waldis, M. (2012). Interesse an Mathematik. Münster: Waxmann. |
[113] | Petermann, F., & Winkel, S. (2007). FLM 4-6. Fragebogen zur Leistungsmotivation für Schüler der 4. Bis 6. Klasse. Frankfurt a. M.: Harcourt Test Services. |
[114] | Ufer, S., Rach, S., & Kosiol, T. (2017). Interest in mathematics = Interest in mathematics? What general measures of interest reflect when the object of interest changes. ZDM, 49 (3), 397-409. |
[115] | Käpnick, F. (2011). Fünf häufige Irrtümer. Zum Umgang mit mathematisch begabten Kindern. Mathematik Differenziert, 3, 7-9. |
[116] | O’Mara, A. J., Marsh, H. W., Craven, R. G., & Debus, R. (2006). Do self-concept interventions make a difference? A synergetic blend of construct validation and meta-analysis. Educational Psychologist, 41 (3), 181-206. |
[117] | Gaspard, H., Dicke, A. -L., Flunger, B., Brisson, B. M., Häfner, I., Nagengast, B., & Trautwein, U. (2015). Fostering adolescents’ value beliefs for mathematics with a relevance intervention in the classroom. Developmental Psychology, 51 (9), 1226-1240. |
[118] | Benölken, R. (2012). “Mathe für kleine Asse” (für Mädchen!). Über eine Gruppe des Münsteraner Förderprojekts für mathematisch begabte Kinder an einer Grundschule. In C. Fischer, C. Fischer-Ontrup, F. Käpnick, F. -J. Mönks, H. Scheerer & C. Solzbacher (eds.), Individuelle Förderung multipler Begabungen. Fachbezogene Forder- und Förderkonzepte (pp. 87-94). Berlin: Lit. |
[119] | Jahnke-Klein, S. (2001). Sinnstiftender Mathematikunterricht für Mädchen und Jungen. Baltmannsweiler: Schneider. |
[120] | Benölken, R. (2013). Begabte Mädchen finden und fördern. Erfahrungen aus dem Projekt “Mathe für kleine Asse”. Grundschule, 11, 20-22. |
[121] | Jungwirth, H. (1991). Die Dimension “Geschlecht” in den Interaktionen des Mathematikunterrichts. Journal für Mathematik-Didaktik, 12 (2/3), 133-170. |
[122] | Benölken, R. & Mellroth, E. (2017). The significance of motivational factors from a potential- and gender-related view. Proceedings of the 8th Nordic Conference on Mathematics Education. Stockholm, Sweden: Nordic Society for Research in Mathematics Education. https://pp-prod-admin.it.su.se/polopoly_fs/1.329970.1493116650%21/menu/standard/file/Beno%CC%88lken%20and%20Mellroth_The%20significance%20of%20motivational%20factors%20from%20a%20potential-%20and%20gender-related%20view.pdf. Accessed 07 September 2018. |
APA Style
Ralf Benölken. (2019). Giftedness, Gender and Motivation – The Impact of Mathematics Self-Efficacy, Interest and Attitudes as Determinants to Identify Mathematical Giftedness. Education Journal, 8(5), 211-225. https://doi.org/10.11648/j.edu.20190805.16
ACS Style
Ralf Benölken. Giftedness, Gender and Motivation – The Impact of Mathematics Self-Efficacy, Interest and Attitudes as Determinants to Identify Mathematical Giftedness. Educ. J. 2019, 8(5), 211-225. doi: 10.11648/j.edu.20190805.16
AMA Style
Ralf Benölken. Giftedness, Gender and Motivation – The Impact of Mathematics Self-Efficacy, Interest and Attitudes as Determinants to Identify Mathematical Giftedness. Educ J. 2019;8(5):211-225. doi: 10.11648/j.edu.20190805.16
@article{10.11648/j.edu.20190805.16, author = {Ralf Benölken}, title = {Giftedness, Gender and Motivation – The Impact of Mathematics Self-Efficacy, Interest and Attitudes as Determinants to Identify Mathematical Giftedness}, journal = {Education Journal}, volume = {8}, number = {5}, pages = {211-225}, doi = {10.11648/j.edu.20190805.16}, url = {https://doi.org/10.11648/j.edu.20190805.16}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.edu.20190805.16}, abstract = {A widespread but internationally inconsistent phenomenon is the underrepresentation of girls in programs aimed at supporting mathematical giftedness from primary-school age. It contradicts the consensus that girls and boys have equal potentials independent of certain domains. According to current giftedness models that emphasize the significance of both cognitive and co-cognitive parameters, motivational constructs are one important factor to consider in the context of identification and support. For instance, existing studies indicate that girls and boys who were identified as being mathematically gifted, as well as boys who were not, often show more advantageous mathematical self-concepts and attributions than girls who were not identified as such. The obvious question is whether such empirical indicators can also be found in similar motivational constructs, since altogether they might provide deeper indications of the significance of motivational factors as determinants to identify mathematical giftedness from a gender perspective. This article investigates this question by focusing on mathematics self-efficacy, interest and attitudes in a quantitative cross-sectional questionnaire study with children at primary-school age. It did so by comparing frequent characteristics of four groups: boys and girls identified as being mathematically gifted, as well as boys and girls who were not. Against the background of available findings on other motivational factors as well as various research results on self-efficacy, interest, and attitudes, the hypotheses were obvious that girls and boys who were identified as being mathematically gifted, as well as boys who were not, often show more advantageous mathematics self-efficacy, interest, and attitudes than girls who were not identified as such. Summarized, the study’s results confirm these hypotheses in principle. Thus, the findings can help to explain the phenomenon of the rare identification of girls’ mathematical giftedness, because teachers, for example, might perceive boys’ potentials primarily. As a consequence, the development of advantageous characteristics of mathematics self-efficacy, interests and attitudes independent of questions as to the identification of mathematical giftedness seems to be important especially with girls.}, year = {2019} }
TY - JOUR T1 - Giftedness, Gender and Motivation – The Impact of Mathematics Self-Efficacy, Interest and Attitudes as Determinants to Identify Mathematical Giftedness AU - Ralf Benölken Y1 - 2019/08/30 PY - 2019 N1 - https://doi.org/10.11648/j.edu.20190805.16 DO - 10.11648/j.edu.20190805.16 T2 - Education Journal JF - Education Journal JO - Education Journal SP - 211 EP - 225 PB - Science Publishing Group SN - 2327-2619 UR - https://doi.org/10.11648/j.edu.20190805.16 AB - A widespread but internationally inconsistent phenomenon is the underrepresentation of girls in programs aimed at supporting mathematical giftedness from primary-school age. It contradicts the consensus that girls and boys have equal potentials independent of certain domains. According to current giftedness models that emphasize the significance of both cognitive and co-cognitive parameters, motivational constructs are one important factor to consider in the context of identification and support. For instance, existing studies indicate that girls and boys who were identified as being mathematically gifted, as well as boys who were not, often show more advantageous mathematical self-concepts and attributions than girls who were not identified as such. The obvious question is whether such empirical indicators can also be found in similar motivational constructs, since altogether they might provide deeper indications of the significance of motivational factors as determinants to identify mathematical giftedness from a gender perspective. This article investigates this question by focusing on mathematics self-efficacy, interest and attitudes in a quantitative cross-sectional questionnaire study with children at primary-school age. It did so by comparing frequent characteristics of four groups: boys and girls identified as being mathematically gifted, as well as boys and girls who were not. Against the background of available findings on other motivational factors as well as various research results on self-efficacy, interest, and attitudes, the hypotheses were obvious that girls and boys who were identified as being mathematically gifted, as well as boys who were not, often show more advantageous mathematics self-efficacy, interest, and attitudes than girls who were not identified as such. Summarized, the study’s results confirm these hypotheses in principle. Thus, the findings can help to explain the phenomenon of the rare identification of girls’ mathematical giftedness, because teachers, for example, might perceive boys’ potentials primarily. As a consequence, the development of advantageous characteristics of mathematics self-efficacy, interests and attitudes independent of questions as to the identification of mathematical giftedness seems to be important especially with girls. VL - 8 IS - 5 ER -