| Peer-Reviewed

Growth Analysis, and Yield Responses of Millet (Pennisetum glaucum (L.) R. Br.) and Cowpea (Vigna unguiculata [L.] Walp) in an Intercropping System

Received: 24 July 2023     Accepted: 15 August 2023     Published: 28 August 2023
Views:       Downloads:
Abstract

Niger, with a diversified agricultural production system, is dominated by the cultivation of millet for cereals, and cowpea for legumes where they are most often grown in combination. Among the cereal/legume combinations observed, the millet/cowpea combination is by far the most used by producers. This study aimed to evaluate the field experiment in 2021 rainy conditions, the growth, and the yield and yield components of millet/cowpea intercropping. A split-plot design was employed in this experiment, with treatments in main plots, and the varieties in small plots. Treatments included millet sole crop, cowpea sole crop, and intercropping millet/cowpea. Three genotypes of cowpea and a variety of millet, Heini Kirey Précoce (HKP) were used in this study. Growth and yield variables such as leaf area index (LAI), specific leaf area (SLA) and crop growth rate (CGR), biomass and seeds yield, millet 1000 seeds weight, harvest index, and LER were determined. Four cuts were made to determine the growth variables, at the tillering stage, elongation stage, 50% flowering of millet, and dough stage of millet grains. The results showed that total dry matter achieved by intercrop was significantly higher than those achieved by either millet or cowpea sole crop. Grain yield and thousand grain weights of millet were not affected by intercropping while cowpea did not produce any grain. The LAI was higher in intercropping than in sole crops, with higher values at the dough stage of the grains. The growth was maximal for both crops between the second and third cut with optimal growth rates. The LAI was higher in association than in pure culture and with higher values at the dough stage of the grains. Growth was maximum between the bolting and 50% flowering stages with optimal LAI and growth rate values.

Published in American Journal of Bioscience and Bioengineering (Volume 11, Issue 3)
DOI 10.11648/j.bio.20231103.11
Page(s) 27-35
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2023. Published by Science Publishing Group

Keywords

Dry Matter, LAI, Legume, Cereal, Niger

References
[1] Ben Mohamed, A., Van Duivenbooden, N., & Abdoussallam, S. 2002. Impact of climate change on agricultural production in the Sahel–Part 1. Methodological approach and case study for millet in Niger. Climatic Change, 54 (3), 327-348.
[2] FAOSTAT. 2016. FAO. doc_23_déc_2016_12h12. doc. www.fao.org/faostat/fr/
[3] Amodu, J. T., Adeyinka, I. A., Kallah, M. S., & Alawa, J. P. 2007. Evaluation of pearl millet accession for yield and nutrient composition. Journal of Biological Sciences, 7, 379-383.
[4] Govindaraj, M., Shanmugasundaram, P., Sumathi, P., & Muthiah, A. R. 2010. Simple, rapid, and cost-effective screening method for drought-resistant pearl millet breeding. Electronic journal of plant breeding, 1 (4), 590-599.
[5] Bashir, E. M., Ali, A. M., Ali, A. M., Ismail, M. I., Parzies, H. K., & Haussmann, B. I. 2014. Patterns of pearl millet genotype-by-environment interaction for yield performance and grain iron (Fe) and zinc (Zn) concentrations in Sudan. Field Crops Research, 166, 82-91.
[6] Pucher, A., Høgh‐Jensen, H., Gondah, J., Hash, C. T., & Haussmann, B. I. 2014. Micronutrient density and stability in West African pearl millet—potential for biofortification. Crop Science, 54 (4), 1709-1720.
[7] Bell, C. H. (2000). Fumigation in the 21st century. Crop Protection, 19 (8-10), 563-569.
[8] FAO. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW)—Managing Systems at Risk; Earthscan: London, UK, 2011; ISBN 978-0-203-14283-7. [Google Scholar].
[9] INS (Institut National de Statistique). 2009. Annuaire de statistique sanitaire du Niger. Institut National de Statistique, 156 p.
[10] Atchada, C. C., Zoffoun, A. G., Akplo, T. M., Azontonde, A. H., Tente, A. B., & Djego, J. G. 2018. Modes d’utilisation des terres et stock de carbone organique du sol dans le bassin supérieur de Magou au Bénin. International Journal of Biological and Chemical Sciences, 12 (6), 2818-2829.
[11] Hamidou, F. 2006. Paramètres physiologiques, biochimiques et agronomiques pertinents pour les programmes d’amélioration de l’adaptation du niébé (Vigna unguiculata (L.) WALP au déficit hydrique. Thèse Doct., Université Ouagadougou. 169p.
[12] Abdoul-Karim, T. D., Sanoussi, A., Soulé, M., & Yacoubou, B. (2022). The combined effect of fertilizer micro-dosing and intercropped millet/cowpea effect on agronomic and economic advantages in prone Sahel area, Niger. Discover Sustainability, 3 (1), 31.
[13] Hamidine, I., Lawali, S., Rabe, M. M., & Boukary, B. I. 2021. Caractérisation des exploitations agricoles familiales productrices du mil et leur niveau de résilience dans la bande sud du Niger. Journal of Agriculture and Veterinary Science, 14 (7), 05-16.
[14] Baoua, I., Rabé, M. M., Murdock, L. L., & Baributsa, D. 2021. Cowpea production constraints on smallholders’ farms in Maradi and Zinder regions, Niger. Crop Protection, 142, 105533. https://doi.org/10.1016/j.cropro.2021.105533
[15] Bedoussac, L. 2009. Analyse du fonctionnement des performances des associations blé dur-pois d'hiver et blé dur-féverole d'hiver pour la conception d'itinéraires techniques adaptés à différents objectifs de production en systèmes bas-intrants Thèse de doctorat de l’Université de Toulouse. 238 P.
[16] Willey, R. 1979. Intercropping-its importance and its research needs. Part I. Competition and yield advantages. In Field Crop Abstr. (Vol. 32, pp. 1-10).
[17] Ofori, F., & Stern, W. R. 1987. Cereal–legume intercropping systems. Advances in Agronomy, 41, 41-90.
[18] Jensen, E. S. 1996. Grain yield, symbiotic N 2 fixation, and interspecific competition for inorganic N in pea-barley intercrops. Plant and soil, 182, 25-38.
[19] Bedoussac, L., & Justes, E. 2010. The efficiency of a durum wheat-winter pea intercrop to improve yield and wheat grain protein concentration depends on N availability during early growth. Plant and soil, 330, 19-35.
[20] Hauggaard-Nielsen, H., Ambus, P., Jensen, E. S. 2001. Interspecific competition, N use, and Variations in net assimilation rate and leaf area between species and varieties, and within and between years. Annals of Botany 11, 41: 41-76.
[21] Hauggaard-Nielsen, H., & Jensen, E. S. 2005. Facilitative root interactions in intercrops. Root physiology: From gene to function, 237-250.
[22] Hauggaard-Nielsen, H., Andersen, M. K., Jørnsgaard, B., Jensen, E. S. 2006. Density and relative interference with weeds in pea-barley intercropping. Field Crops Res. 70: 101-109.
[23] Salez, P. 1988. Compréhension et amélioration des systèmes de culture associés céréales légumineuses au Cameroun. Thèse de Doctorat, Ecole Nationale Supérieure Agronome de Montpellier, IRAT-CIRAD, 190p.
[24] Coulibaly, K. 2012. Analyse des facteurs de variabilité des performances agronomiques et économiques des cultures et de l'évolution de la fertilité des sols dans les systèmes cultura\L'\ intégrant les légumineuses en milieu soudanien du Burkina Faso; approche expérimentale chez et par les paysans. Thèse de Doctorat, Université Polytechnique deBobo-Dioulasso, 149 p.
[25] Chen, J. M., & Black, T. A. 1992. Defining leaf area index for non‐flat leaves. Plant, Cell & Environment, 15 (4), 421-429.
[26] Morisette, J. T., Baret, F., Privette, J. L., Myneni, R. B., Nickeson, J. E., Garrigues, S., & Cook, R. 2006. Validation of global moderate-resolution LAI products: A framework proposed within the CEOS land product validation subgroup. IEEE Transactions on Geoscience and Remote Sensing, 44 (7), 1804-1817.
[27] Norman, J. M., & Arkebauer, T. J. 1991. Predicting canopy light‐use efficiency from leaf characteristics. Modeling plant and soil systems, 31, 125-143.
[28] Van Oosterom, E. J., O’Leary, G. J., Carberry, P. S., & Craufurd, P. Q. 2002. Simulating growth, development, and yield of tillering pearl millet. III. Biomass accumulation and partitioning. Field Crops Research, 79 (2-3), 85-106.
[29] Bonhomme, R., & Varlet-Grancher, C. 1978. Estimation of gramineous crop geometry by plant profiles including leaf with variations. Photosynthetica, 12 (2), 193-196.
[30] Prevot, L., Aries, F., & Monestiez, P. 1991. Modélisation de la structure géométrique du maïs. Agronomie, 11 (6), 491-503.
[31] Edmeades, G. O., & Daynard, T. B. 1979. The development of plant-to-plant variability in maize at different planting densities. Canadian Journal of Plant Science, 59 (3), 561-576.
[32] Sanderson, J. B., Daynard, T. B., & Tollenaar, M. 1981. A mathematical model of the shape of corn leaves. Canadian Journal of Plant Science, 61 (4), 1009-1011.
[33] Resmond, R. (2011). Relation entre traits fonctionnels de plantes de services et leur capacité à contrôler des adventices en bananeraie. Mémoire de fin d’étude pour l’obtention du Diplôme d’Ingénieur de l’Institut Supérieur des Sciences Agronomiques, Agroalimentaires, Horticoles et du Paysage (65 P).
[34] Yang, C., Fan, Z., & Chai, Q. 2018. Agronomic and economic benefits of pea/maize intercropping systems about N fertilizer and maize density. Agronomy, 8 (4), 52.
[35] Blackman, V. H. 1919. The compound interest law and plant growth. Annals of Botany, 33 (131), 353-360.
[36] Watson, D. J. 1947. Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Annals of botany, 11 (41), 41-76.
[37] Pandey, Y. R., Pun, A. B., & Mishra, R. C. 2006. Evaluation of vegetable-type cowpea varieties for commercial production in the river basin and low hill areas. Nepal Agriculture Research Journal, 7, 16-20.
[38] Adole, T., Dash, J., Rodriguez-Galiano, V., & Atkinson, P. M. 2019. Photoperiod controls vegetation phenology across Africa. Communications biology, 2 (1), 391.
[39] Roberts, E. H. 1987. Measurement and prediction of flowering in annual crops. Manipulation of flowering, 17-50.
[40] Obulbiga, M. F., Bougouma, V., & Sanon, H. O. 2015. Amélioration de l’offre fourragère par l’association culturale céréalelégumineuse à double usage en zone nord soudanienne du Burkina Faso. International Journal of Biological and Chemical Sciences, 9 (3), 1431-1439.
[41] Dalal, R. C. 1977. Effect of intercropping of maize with soya bean on grain yield. Tropical agriculture. (Trinidad) 54: 189-191.
[42] Wahua, T. A. T., & Miller, D. A. 1978. Relative Yield Totals and Yield Components of Intercropped Sorghum and Soybeans 1. Agronomy Journal, 70 (2), 287-291.
[43] Wanki, S. B. C., Fawusi, M. O. A., & Nangju, D. 1982. Pod and grain yields from intercropping maize and Vigna unguiculata (L.) Walp. in Nigeria. The Journal of Agricultural Science, 99 (1), 13-17.
[44] Adjahossou, B., Adjahossou, V., Adjahossou, D., Edorh, P., Sinsin, B., & Boko, M. 2009. Aspects nutritionnels de l’optimisation d’un système de cultures associant le maïs et l’arachide au Sud-Bénin. International Journal of Biological and Chemical Sciences, 3 (5).
[45] Garba A. M., 2007. Etude des possibilités d'amélioration des systèmes de production à base de légumineuses alimentaires (niébé-arachide) dans la zone agro-écologique du Fakara, Sud-Ouest du Niger. Mémoire de fin d'études. Gestion des ressources animales et végétales en milieux tropicaux: Université de Liège (Belgique), 72 p.
[46] Zougmore, R., Kambou, F. N., Ouattara, K., & Guillobez, S. (2000). Sorghum-cowpea intercropping: an effective technique against runoff and soil erosion in the Sahel (Saria, Burkina Faso). Arid Soil Research and Rehabilitation, 14 (4), 329-342.
[47] Singh, B. B., and Ajeigbe, H. A. 2000. Improving cowpea-cereals based cropping. Pages 278-286. In: Challenges and Opportunities for enhancing sustainable Cowpea Production. Proceedings of the world Cowpea Conference III held at the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria, 4-8 September 2000. IITA, Ibadan, Nigeria.
[48] Parfait, G. 1986. Influence de l'association mai͏̈s (zea mays)/haricot (phaseolus vulgaris) sur la fructification du haricot et les attaques d'une bruche spécialiste du phaseolus vulgaris, acanthoscelides obtectus (Doctoral dissertation, Pau).
[49] Malone, S. M., Holshouser, D. L., Herbert Jr, D. A., & Jones, B. P. 2009. Identifying Soybean Fields at Risk to Leaf-Feeding Insects.
[50] Jackson, R. D., Slater, P. N., & Pinter Jr, P. J. 1983. Discrimination of growth and water stress in wheat by various vegetation indices through clear and turbid atmospheres. Remote sensing of environment, 13 (3), 187-208.
[51] Adelusi, A. A., & Aileme, J. D. 2006. Effects of light and nutrient stress on some growth parameters of cowpea (Vigna unguiculata (L.) Walp). Research Journal of Botany, 1 (2), 95-103.
[52] De Barros, I., Gaiser, T., Lange, F. M., & Römheld, V. 2007. Mineral nutrition and water use patterns of a maize/cowpea intercrop on a highly acidic soil of the tropic semiarid. Field Crops Research, 101 (1), 26-36.
[53] Uarrota, V. G. 2010. Response of cowpea (Vigna unguiculata L. Walp.) to water stress and phosphorus fertilization. Journal of Agronomy, 9 (3), 87-91.
Cite This Article
  • APA Style

    Toudou Daouda Abdoul-Karim, Daouda Insa Bani, Atta Sanoussi. (2023). Growth Analysis, and Yield Responses of Millet (Pennisetum glaucum (L.) R. Br.) and Cowpea (Vigna unguiculata [L.] Walp) in an Intercropping System. American Journal of Bioscience and Bioengineering, 11(3), 27-35. https://doi.org/10.11648/j.bio.20231103.11

    Copy | Download

    ACS Style

    Toudou Daouda Abdoul-Karim; Daouda Insa Bani; Atta Sanoussi. Growth Analysis, and Yield Responses of Millet (Pennisetum glaucum (L.) R. Br.) and Cowpea (Vigna unguiculata [L.] Walp) in an Intercropping System. Am. J. BioSci. Bioeng. 2023, 11(3), 27-35. doi: 10.11648/j.bio.20231103.11

    Copy | Download

    AMA Style

    Toudou Daouda Abdoul-Karim, Daouda Insa Bani, Atta Sanoussi. Growth Analysis, and Yield Responses of Millet (Pennisetum glaucum (L.) R. Br.) and Cowpea (Vigna unguiculata [L.] Walp) in an Intercropping System. Am J BioSci Bioeng. 2023;11(3):27-35. doi: 10.11648/j.bio.20231103.11

    Copy | Download

  • @article{10.11648/j.bio.20231103.11,
      author = {Toudou Daouda Abdoul-Karim and Daouda Insa Bani and Atta Sanoussi},
      title = {Growth Analysis, and Yield Responses of Millet (Pennisetum glaucum (L.) R. Br.) and Cowpea (Vigna unguiculata [L.] Walp) in an Intercropping System},
      journal = {American Journal of Bioscience and Bioengineering},
      volume = {11},
      number = {3},
      pages = {27-35},
      doi = {10.11648/j.bio.20231103.11},
      url = {https://doi.org/10.11648/j.bio.20231103.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.bio.20231103.11},
      abstract = {Niger, with a diversified agricultural production system, is dominated by the cultivation of millet for cereals, and cowpea for legumes where they are most often grown in combination. Among the cereal/legume combinations observed, the millet/cowpea combination is by far the most used by producers. This study aimed to evaluate the field experiment in 2021 rainy conditions, the growth, and the yield and yield components of millet/cowpea intercropping. A split-plot design was employed in this experiment, with treatments in main plots, and the varieties in small plots. Treatments included millet sole crop, cowpea sole crop, and intercropping millet/cowpea. Three genotypes of cowpea and a variety of millet, Heini Kirey Précoce (HKP) were used in this study. Growth and yield variables such as leaf area index (LAI), specific leaf area (SLA) and crop growth rate (CGR), biomass and seeds yield, millet 1000 seeds weight, harvest index, and LER were determined. Four cuts were made to determine the growth variables, at the tillering stage, elongation stage, 50% flowering of millet, and dough stage of millet grains. The results showed that total dry matter achieved by intercrop was significantly higher than those achieved by either millet or cowpea sole crop. Grain yield and thousand grain weights of millet were not affected by intercropping while cowpea did not produce any grain. The LAI was higher in intercropping than in sole crops, with higher values at the dough stage of the grains. The growth was maximal for both crops between the second and third cut with optimal growth rates. The LAI was higher in association than in pure culture and with higher values at the dough stage of the grains. Growth was maximum between the bolting and 50% flowering stages with optimal LAI and growth rate values.},
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Growth Analysis, and Yield Responses of Millet (Pennisetum glaucum (L.) R. Br.) and Cowpea (Vigna unguiculata [L.] Walp) in an Intercropping System
    AU  - Toudou Daouda Abdoul-Karim
    AU  - Daouda Insa Bani
    AU  - Atta Sanoussi
    Y1  - 2023/08/28
    PY  - 2023
    N1  - https://doi.org/10.11648/j.bio.20231103.11
    DO  - 10.11648/j.bio.20231103.11
    T2  - American Journal of Bioscience and Bioengineering
    JF  - American Journal of Bioscience and Bioengineering
    JO  - American Journal of Bioscience and Bioengineering
    SP  - 27
    EP  - 35
    PB  - Science Publishing Group
    SN  - 2328-5893
    UR  - https://doi.org/10.11648/j.bio.20231103.11
    AB  - Niger, with a diversified agricultural production system, is dominated by the cultivation of millet for cereals, and cowpea for legumes where they are most often grown in combination. Among the cereal/legume combinations observed, the millet/cowpea combination is by far the most used by producers. This study aimed to evaluate the field experiment in 2021 rainy conditions, the growth, and the yield and yield components of millet/cowpea intercropping. A split-plot design was employed in this experiment, with treatments in main plots, and the varieties in small plots. Treatments included millet sole crop, cowpea sole crop, and intercropping millet/cowpea. Three genotypes of cowpea and a variety of millet, Heini Kirey Précoce (HKP) were used in this study. Growth and yield variables such as leaf area index (LAI), specific leaf area (SLA) and crop growth rate (CGR), biomass and seeds yield, millet 1000 seeds weight, harvest index, and LER were determined. Four cuts were made to determine the growth variables, at the tillering stage, elongation stage, 50% flowering of millet, and dough stage of millet grains. The results showed that total dry matter achieved by intercrop was significantly higher than those achieved by either millet or cowpea sole crop. Grain yield and thousand grain weights of millet were not affected by intercropping while cowpea did not produce any grain. The LAI was higher in intercropping than in sole crops, with higher values at the dough stage of the grains. The growth was maximal for both crops between the second and third cut with optimal growth rates. The LAI was higher in association than in pure culture and with higher values at the dough stage of the grains. Growth was maximum between the bolting and 50% flowering stages with optimal LAI and growth rate values.
    VL  - 11
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Laboratoire de recherche en Gestion et Valorisation de la Biodiversité au Sahel (GeVaBios), Faculté des Sciences et Techniques, Université Abdou Moumouni de Niamey, Niamey, Niger

  • Laboratoire de recherche en Gestion et Valorisation de la Biodiversité au Sahel (GeVaBios), Faculté des Sciences et Techniques, Université Abdou Moumouni de Niamey, Niamey, Niger

  • Centre Régional AGRHYMET, Niamey, Niger

  • Sections