| Peer-Reviewed

In vitro Effects of Anogeissus leiocarpus and Adansonia digitata on Two Life-cycle Stages of Haemonchus contortus, a Gastrointestinal Parasite of Small Ruminants

Received: 17 October 2021     Accepted: 25 December 2021     Published: 8 January 2022
Views:       Downloads:
Abstract

This study evaluated the in vitro anthelmintic activity of aqueous and hydroethanolic extracts of Anogeissus leiocarpus and Adansonia digitata leaf powder at 75; 150; 300; 600; 1200 and 2400 µg/mL against H. contortus, using the egg hatch test and the adult worm motility inhibition test. For egg hatch inhibition, the both plants showed significant concentration-dependent efficacy and were significantly more effective (p < 0.001) at the highest concentrations (1200 and 2400 µg/mL) than at the lowest. The hydro ethanolic extract of A. leiocarpus showed the highest inhibition (R2 = 0.9963) and the aqueous extract of the same plant showed the lowest inhibition (R2 = 0.9742). The 50% inhibitory concentration (IC50) of the A. leiocarpus aqueous and hydro ethanolic extracts (86.19 and 72.5 µg/mL) were 3 times lower than those of the A. digitata extracts (302 and 269.5 µg/mL). Mobility of adult worms was also concentration dependent (p<0.05); and also dependent on incubation time (p<0.01). At 2400 μg/mL, all adult worms were immobile after 6 h of exposure, whereas at the lowest concentration (75 μg/mL), all adult worms were immobile after 36 h of exposure. Extracts from both plants had similar activity. Finally, the results of the present study suggest that the both plants studied have anthelmintic properties in vitro which would explain their use by livestock farmers. However, in vivo tests should be performed to confirm these properties in vivo as well.

Published in Animal and Veterinary Sciences (Volume 10, Issue 1)
DOI 10.11648/j.avs.20221001.11
Page(s) 1-7
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2022. Published by Science Publishing Group

Keywords

Haemonchus contortus, Two Life-cycle Stages, Anogeissus leiocarpus, Adansonia digitate, Anthelmintic, In vitro Methods

References
[1] FAOSTAT. (2019) Food and Agriculture Organization of the United Nations. FAOSTAT: Statistics Database 2019.
[2] Bai J., Seale Jr J. L., Wahl T. I. (2020) Meat demand in China: to include or not to include meat away from home? Australian Journal of Agricultural and Resource Economics, 64 (1): 150-170. https://doi.org/10.1111/1467-8489.12362
[3] Swarnkar C. P. & Singh D. (2020) Rhythmicity in thermal humidity index and regulation of Haemonchus contortus in sheep of semi-arid tropical Rajasthan. Biological Rhythm Research, 51 (1): 58-66. 10.1080/09291016.2018.1515806.
[4] Vohra S., Singh S., Sangwan A. K. (2020) Epidemiology of Gastrointestinal Helminths of Sheep in Aeolian Plains of Haryana. Journal of Animal Research, 10 (1): 47-52.
[5] Villalba J. J., Miller J., Ungar E. D., Landau S. Y., Glendinning J. (2014) Ruminant self-medication against gastrointestinal nematodes: evidence, mechanism, and origins. Parasite, 21: 31. 10.1051/parasite/2014032.
[6] Alowanou G. G., Olounlade P. A., Akouedegni G. C., Faihun A. M. L., Koudande D. O., Hounzangbe-Adote S. (2019) In vitro anthelmintic effects of Bridelia ferruginea, Combretum glutinosum, and Mitragyna inermis leaf extracts on Haemonchus contortus, an abomasal nematode of small ruminants. Parasitol Res, 118 (4): 1215-1223. 10.1007/s00436-019-06262-5.
[7] Hoberg E. P. & Zarlenga D. S. (2016) Evolution and Biogeography of Haemonchus contortus: Linking Faunal Dynamics in Space and Time. Adv Parasitol, 93: 1-30. 10.1016/bs.apar.2016.02.021.
[8] Vercruysse J., Charlier J., Van Dijk J., Morgan E. R., Geary T., von Samson-Himmelstjerna G., Claerebout E. (2018) Control of helminth ruminant infections by 2030. Parasitology, 145 (13): 1655-1664. 10.1017/S003118201700227X.
[9] Morgan E. R., Aziz N. A., Blanchard A., Charlier J., Charvet C., Claerebout E., Geldhof P., Greer A. W., Hertzberg H., Hodgkinson J. et al. (2019) 100 Questions in Livestock Helminthology Research. Trends Parasitol, 35 (1): 52-71. 10.1016/j.pt.2018.10.006.
[10] Bortoluzzi B. B., Buzatti A., Chaaban A., Pritsch I. C., Dos Anjos A., Cipriano R. R., Deschamps C., Molento M. B. (2021) Mentha villosa Hubs., M. x piperita and their bioactives against gastrointestinal nematodes of ruminants and the potential as drug enhancers. Vet Parasitol, 289: 109317. 10.1016/j.vetpar.2020.109317.
[11] Santos C., Campestrini L. H., Vieira D. L., Pritsch I., Yamassaki F. T., Zawadzki-Baggio S. F., Maurer J. B., Molento M. B. (2018) Chemical Characterization of Opuntia ficus-indica (L.) Mill. Hydroalcoholic Extract and Its Efficiency against Gastrointestinal Nematodes of Sheep. Veterinary Sciences, 5 (3). 10.3390/vetsci5030080.
[12] Lima P. M. T., Crouzoulon P., Sanches T. P., Zabre G., Kabore A., Niderkorn V., Hoste H., Amarante A., Costa-Junior L. M., Abdalla A. L. et al. (2019) Effects of Acacia mearnsii supplementation on nutrition, parasitological, blood parameters and methane emissions in Santa Ines sheep infected with Trichostrongylus colubriformis and Haemonchus contortus. Exp Parasitol, 207: 107777. 10.1016/j.exppara.2019.107777.
[13] Martínez-Ortiz-de-Montellano C., Torres-Acosta J. F. d. J., Fourquaux I., Sandoval-Castro C. A., Hoste H. (2019) Ultrastructural study of adult Haemonchus contortus exposed to polyphenol-rich materials under in vivo conditions in goats. Parasite (Paris, France), 26: 65-65. 10.1051/parasite/2019065.
[14] Karonen M., Ahern J. R., Legroux L., Suvanto J., Engstrom M. T., Sinkkonen J., Salminen J. P., Hoste H. (2020) Ellagitannins Inhibit the Exsheathment of Haemonchus contortus and Trichostrongylus colubriformis Larvae: The Efficiency Increases Together with the Molecular Size. J Agric Food Chem, 68 (14): 4176-4186. 10.1021/acs.jafc.9b06774.
[15] Maestrini M., Tava A., Mancini S., Tedesco D., Perrucci S. (2020) In Vitro Anthelmintic Activity of Saponins from Medicago spp. Against Sheep Gastrointestinal Nematodes. Molecules, 25 (2). 10.3390/molecules25020242.
[16] Saratsi K., Hoste H., Voutzourakis N., Tzanidakis N., Stefanakis A., Thamsborg S. M., Mueller-Harvey I., Hadjigeorgiou I., Sotiraki S. (2020) Feeding of carob (Ceratonia siliqua) to sheep infected with gastrointestinal nematodes reduces faecal egg counts and worm fecundity. Vet Parasitol, 284: 109200. 10.1016/j.vetpar.2020.109200.
[17] Braca A., Sinisgalli C., De Leo M., Muscatello B., Cioni P., Milella L., Ostuni A., Giani S., Sanogo R. (2018) Phytochemical Profile, Antioxidant and Antidiabetic Activities of Adansonia digitata L. (Baobab) from Mali, as a Source of Health-Promoting Compounds. Molecules, 23 (12): 1-18. 10.3390/molecules23123104.
[18] Adeoye A. O. & Bewaji C. O. (2019) Activity of Adansonia digitata on biochemical and hematological changes in established Plasmodium berghei-infected mice. Comparative Clinical Pathology, 28 (5): 1363-1371. 10.1007/s00580-019-02972-5.
[19] Spalenka J., Hubert J., Voutquenne-Nazabadioko L., Escotte-Binet S., Borie N., Velard F., Villena I., Aubert D., Renault J. H. (2020) In Vitro and In Vivo Activity of Anogeissus leiocarpa Bark Extract and Isolated Metabolites against Toxoplasma gondii. Planta Med, 86 (4): 294-302. 10.1055/a-1088-8449.
[20] Salih E. Y. A., Julkunen-Tiitto R., Luukkanen O., Sipi M., Fahmi M. K. M., Fyhrquist P. J. (2020) Potential Anti-Tuberculosis Activity of the Extracts and Their Active Components of Anogeissus Leiocarpa (DC.) Guill. and Perr. with Special Emphasis on Polyphenols. Antibiotics (Basel), 9 (7). 10.3390/antibiotics9070364.
[21] Coles G. C., Bauer C., Borgsteede F. H. M., Geerts S., Klei T. R., Taylor M. A., Waller P. J. (1992) World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Veterinary Parasitology, 44 (1): 35-44. https://doi.org/10.1016/0304-4017(92)90141-U
[22] Team R. C.: A language and environment for statistical computing: R Foundation for Statistical Computing, Vienna, Austria. http:// www.R-project.org/. Accessed 02 Sep 2021; 2013.
[23] De Mendiburu F. (2014) Agricolae: statistical procedures for agricultural research. R package version, 1 (1): 1-4.
[24] Olounlade P. A., Azando E. V., Hounzangbe-Adote M. S., Ha T. B., Leroy E., Moulis C., Fabre N., Magnaval J. F., Hoste H., Valentin A. (2012) In vitro anthelmintic activity of the essential oils of Zanthoxylum zanthoxyloides and Newbouldia laevis against Strongyloides ratti. Parasitol Res, 110 (4): 1427-1433. 10.1007/s00436-011-2645-4.
[25] Babják M., Königová A., Urda Dolinská M., Kupčinskas T., Vadlejch J., von Samson-Himmelstjerna G., Petkevičius S., Várady M. (2021) Does the in vitro egg hatch test predict the failure of benzimidazole treatment in Haemonchus contortus? Parasite, 28: 62. 10.1051/parasite/2021059.
[26] Maestrini M., Molento M. B., Forzan M., Perrucci S. (2021) In vitro anthelmintic activity of an aqueous extract of Glycyrrhiza glabra and of glycyrrhetinic acid against gastrointestinal nematodes of small ruminants. Parasite, 28: 64. 10.1051/parasite/2021060.
[27] Castagna F., Britti D., Oliverio M., Bosco A., Bonacci S., Iriti G., Ragusa M., Musolino V., Rinaldi L., Palma E. et al. (2020) In Vitro Anthelminthic Efficacy of Aqueous Pomegranate (Punica granatum L.) Extracts against Gastrointestinal Nematodes of Sheep. Pathogens, 9 (12). 10.3390/pathogens9121063.
[28] Zangueu C. B., Olounlade A. P., Ossokomack M., Djouatsa Y. N. N., Alowanou G. G., Azebaze A. G. B., Llorent-Martínez E. J., de Córdova M. L. F., Dongmo A. B., Hounzangbe-Adote M. S. (2018) In vitro effects of aqueous extract from Maytenus senegalensis (Lam.) Exell stem bark on egg hatching, larval migration and adult worms of Haemonchus contortus. BMC Veterinary Research, 14 (1): 147. 10.1186/s12917-018-1475-3.
[29] Medeiros M. L. S., Alves R. R. V., Oliveira B. F., Napoleao T. H., Paiva P. M. G., Coelho L., Bezerra A., Silva M. D. C. (2020) In vitro effects of Moringa oleifera seed lectins on Haemonchus contortus in larval and adult stages. Exp Parasitol, 218: 108004. 10.1016/j.exppara.2020.108004.
[30] Goel V., Kaur P., Singla L. D., Choudhury D. (2020) Biomedical Evaluation of Lansium parasiticum Extract-Protected Silver Nanoparticles Against Haemonchus contortus, a Parasitic Worm. 7 (396). 10.3389/fmolb.2020.595646.
[31] Zabré G., Kaboré A., Bayala B., Katiki L. M., Costa-Júnior L. M., Tamboura H. H., Belem A. M. G., Abdalla A. L., Niderkorn V., Hoste H. et al. (2017) Comparison of the in vitro anthelmintic effects of Acacia nilotica and Acacia raddiana. Parasite, 24: 44. 10.1051/parasite/2017044.
Cite This Article
  • APA Style

    Julienne Kuiseu, Pascal Abiodoun Olounlade, Claude Gbemeho Houssoukpe, Tony Taofick Babalola Abiodoun Sounkere, Frejus Tanguy Ablo Zinsou, et al. (2022). In vitro Effects of Anogeissus leiocarpus and Adansonia digitata on Two Life-cycle Stages of Haemonchus contortus, a Gastrointestinal Parasite of Small Ruminants. Animal and Veterinary Sciences, 10(1), 1-7. https://doi.org/10.11648/j.avs.20221001.11

    Copy | Download

    ACS Style

    Julienne Kuiseu; Pascal Abiodoun Olounlade; Claude Gbemeho Houssoukpe; Tony Taofick Babalola Abiodoun Sounkere; Frejus Tanguy Ablo Zinsou, et al. In vitro Effects of Anogeissus leiocarpus and Adansonia digitata on Two Life-cycle Stages of Haemonchus contortus, a Gastrointestinal Parasite of Small Ruminants. Anim. Vet. Sci. 2022, 10(1), 1-7. doi: 10.11648/j.avs.20221001.11

    Copy | Download

    AMA Style

    Julienne Kuiseu, Pascal Abiodoun Olounlade, Claude Gbemeho Houssoukpe, Tony Taofick Babalola Abiodoun Sounkere, Frejus Tanguy Ablo Zinsou, et al. In vitro Effects of Anogeissus leiocarpus and Adansonia digitata on Two Life-cycle Stages of Haemonchus contortus, a Gastrointestinal Parasite of Small Ruminants. Anim Vet Sci. 2022;10(1):1-7. doi: 10.11648/j.avs.20221001.11

    Copy | Download

  • @article{10.11648/j.avs.20221001.11,
      author = {Julienne Kuiseu and Pascal Abiodoun Olounlade and Claude Gbemeho Houssoukpe and Tony Taofick Babalola Abiodoun Sounkere and Frejus Tanguy Ablo Zinsou and Basile Saka Boni Konmy and Christian Cocou Dansou and Ibikounle Moudachirou and Severin Babatounde and Sylvie Mawule Hounzangbe-Adote and Patrick Aleodjrodo Edorh},
      title = {In vitro Effects of Anogeissus leiocarpus and Adansonia digitata on Two Life-cycle Stages of Haemonchus contortus, a Gastrointestinal Parasite of Small Ruminants},
      journal = {Animal and Veterinary Sciences},
      volume = {10},
      number = {1},
      pages = {1-7},
      doi = {10.11648/j.avs.20221001.11},
      url = {https://doi.org/10.11648/j.avs.20221001.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.avs.20221001.11},
      abstract = {This study evaluated the in vitro anthelmintic activity of aqueous and hydroethanolic extracts of Anogeissus leiocarpus and Adansonia digitata leaf powder at 75; 150; 300; 600; 1200 and 2400 µg/mL against H. contortus, using the egg hatch test and the adult worm motility inhibition test. For egg hatch inhibition, the both plants showed significant concentration-dependent efficacy and were significantly more effective (p A. leiocarpus showed the highest inhibition (R2 = 0.9963) and the aqueous extract of the same plant showed the lowest inhibition (R2 = 0.9742). The 50% inhibitory concentration (IC50) of the A. leiocarpus aqueous and hydro ethanolic extracts (86.19 and 72.5 µg/mL) were 3 times lower than those of the A. digitata extracts (302 and 269.5 µg/mL). Mobility of adult worms was also concentration dependent (pin vitro which would explain their use by livestock farmers. However, in vivo tests should be performed to confirm these properties in vivo as well.},
     year = {2022}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - In vitro Effects of Anogeissus leiocarpus and Adansonia digitata on Two Life-cycle Stages of Haemonchus contortus, a Gastrointestinal Parasite of Small Ruminants
    AU  - Julienne Kuiseu
    AU  - Pascal Abiodoun Olounlade
    AU  - Claude Gbemeho Houssoukpe
    AU  - Tony Taofick Babalola Abiodoun Sounkere
    AU  - Frejus Tanguy Ablo Zinsou
    AU  - Basile Saka Boni Konmy
    AU  - Christian Cocou Dansou
    AU  - Ibikounle Moudachirou
    AU  - Severin Babatounde
    AU  - Sylvie Mawule Hounzangbe-Adote
    AU  - Patrick Aleodjrodo Edorh
    Y1  - 2022/01/08
    PY  - 2022
    N1  - https://doi.org/10.11648/j.avs.20221001.11
    DO  - 10.11648/j.avs.20221001.11
    T2  - Animal and Veterinary Sciences
    JF  - Animal and Veterinary Sciences
    JO  - Animal and Veterinary Sciences
    SP  - 1
    EP  - 7
    PB  - Science Publishing Group
    SN  - 2328-5850
    UR  - https://doi.org/10.11648/j.avs.20221001.11
    AB  - This study evaluated the in vitro anthelmintic activity of aqueous and hydroethanolic extracts of Anogeissus leiocarpus and Adansonia digitata leaf powder at 75; 150; 300; 600; 1200 and 2400 µg/mL against H. contortus, using the egg hatch test and the adult worm motility inhibition test. For egg hatch inhibition, the both plants showed significant concentration-dependent efficacy and were significantly more effective (p A. leiocarpus showed the highest inhibition (R2 = 0.9963) and the aqueous extract of the same plant showed the lowest inhibition (R2 = 0.9742). The 50% inhibitory concentration (IC50) of the A. leiocarpus aqueous and hydro ethanolic extracts (86.19 and 72.5 µg/mL) were 3 times lower than those of the A. digitata extracts (302 and 269.5 µg/mL). Mobility of adult worms was also concentration dependent (pin vitro which would explain their use by livestock farmers. However, in vivo tests should be performed to confirm these properties in vivo as well.
    VL  - 10
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Zootechnics and Livestock Systems Research Unit (URZoSE), Animal and Fisheries Sciences Laboratory (LaSAH), Doctoral School of Agronomic and Water Sciences (EDSAE), National University of Agriculture (UNA), Porto-Novo, Republic of Benin

  • Zootechnics and Livestock Systems Research Unit (URZoSE), Animal and Fisheries Sciences Laboratory (LaSAH), Doctoral School of Agronomic and Water Sciences (EDSAE), National University of Agriculture (UNA), Porto-Novo, Republic of Benin

  • Zootechnics and Livestock Systems Research Unit (URZoSE), Animal and Fisheries Sciences Laboratory (LaSAH), Doctoral School of Agronomic and Water Sciences (EDSAE), National University of Agriculture (UNA), Porto-Novo, Republic of Benin

  • Zootechnics and Livestock Systems Research Unit (URZoSE), Animal and Fisheries Sciences Laboratory (LaSAH), Doctoral School of Agronomic and Water Sciences (EDSAE), National University of Agriculture (UNA), Porto-Novo, Republic of Benin

  • Zootechnics and Livestock Systems Research Unit (URZoSE), Animal and Fisheries Sciences Laboratory (LaSAH), Doctoral School of Agronomic and Water Sciences (EDSAE), National University of Agriculture (UNA), Porto-Novo, Republic of Benin

  • Zootechnics and Livestock Systems Research Unit (URZoSE), Animal and Fisheries Sciences Laboratory (LaSAH), Doctoral School of Agronomic and Water Sciences (EDSAE), National University of Agriculture (UNA), Porto-Novo, Republic of Benin

  • Zootechnics and Livestock Systems Research Unit (URZoSE), Animal and Fisheries Sciences Laboratory (LaSAH), Doctoral School of Agronomic and Water Sciences (EDSAE), National University of Agriculture (UNA), Porto-Novo, Republic of Benin

  • Zoology Laboratory of the Faculty of Science and Technology, University of Abomey-Calavi (UAC), Cotonou, Republic of Benin

  • Laboratory of Zootechnics, Faculty of Agronomic Sciences, University of Abomey-Calavi (UAC), Cotonou, Republic of Benin

  • Laboratory of Ethnopharmacology and Animal Health, Faculty of Agronomic Sciences, University of Abomey Calavi (UAC), Cotonou, Republic of Benin

  • Laboratory of Toxicology and Environmental Health (LATSE), University of Abomey-Calavi (UAC), Cotonou, Republic of Benin

  • Sections