Hypergraph theory has been found many applications in chemistry. As an important descriptor of molecular structures, the Wiener index of a graph also has many applications. The Wiener index of a connected hypergraph is defined as the summation of distances between all pairs of vertices. If each edge contains exactly k vertices, then a hypergraph G is called k-uniform. A hypertree is a connected hypergraph with no cycles. For k-uniform hypertree, H. Guo, B. Zhou et al. have determined the first, second and third maximum and minimum Wiener indices of uniform hypertrees. And give the unique structure of the k-uniform hypertree corresponding to the Wiener index, Moreover, in this paper, We first find out the relationship between the first few Wiener indices, then according to the structure of the graph, determine the unique k-uniform hypertree with the fifth maximum Wiener index. Through the determination of the fifth Wienr index k-uniform hypertree, the structure of the NTH Wiener index k-uniform hypertree can be found.
Published in | American Journal of Mathematical and Computer Modelling (Volume 4, Issue 3) |
DOI | 10.11648/j.ajmcm.20190403.14 |
Page(s) | 74-82 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2019. Published by Science Publishing Group |
Wiener Index, K-uniform Hypertree, The Fifth Maximum
[1] | F. R. K. Chung. The average distance and the indepence number. J. Graph Theory, 12: 229–235, 1988. |
[2] | I. Gutman, E. V. Konstantinova, V. A. Skorobogatov. Molecular hypergraphs and Clar structural formulas of benzenoid hydrocarbons. ACH Models Chem. 136 (1999) 539–548. |
[3] | A. A. Dobrynin, R. Entringer, I. Gutman. Wiener index of trees: theory and applications. Acta Appl. Math. 66 (2001) 211–249. |
[4] | H. Guo, B. Zhou, H. Lin, The Wiener Index of Uniform Hypergraphs, MATCH Commun. Math. Comput. Chem. 78 (2017) 133–152. |
[5] | E. V. Konstantinova, V. A. Skorobogatov. Application of hypergraph theory in chemistry. Discr. Math. 235 (2001) 365–383. |
[6] | L. Sun, J. Wu, H. Cai, The Wiener Index of r-Uniform Hypergraphs, Bull. Malays. Math. 108 (2015) 43–52. |
[7] | Knor, M., Luzar, B., Škrekovski, R., Gutman, I.: On Wiener index of common neighborhood graphs. MATCH Commun. Math. Comput. Chem. 72, 321–332 (2014). |
[8] | H. Guo, B. Zhou, Properties of Degree Distance and Gutman Index of Uniform Hypergraphs, MATCH Commun. Math. Comput. Chem. 78 (2017) 213-220. |
[9] | Todeschini, R., Consonni, V.: Handbook of Molecular Descriptors. Wiley-VCH, Weinheim (2008). |
[10] | Wiener, H., Structual determination of paraffifin boiling points. J. Am. Chem. Soc. 69 (1), 17–20 (1947). |
[11] | H. Lin, B. Zhou, On the Wiener Index of Uniform Unicyclic Hypergraphs, MATCH Commun. Math. Comput. Chem. (2018). |
[12] | Xu, K., Liu, M., Das, K. C., Gutman, I., Furtula, B.: A survey on graphs extremal with respect to distance-based topological indices. MATCH Commun. Math. Comput. Chem. 71, 461–508 (2014). |
[13] | J. K. Doyle, J. E. Graver. Mean distance in a graph. Discr. Math. 7 (1977) 147–154. |
[14] | P. J. Hansen, J. P. Jurs. Chemical applications of graph theory. Part I. Fundamentals and topological indices. J. Chem. Educ. 65 (1988) 574–580. |
[15] | H. Hosoya, Topological index. A newly proposed quantity characterizing the topological nature of structural of saturated hydrocarbons. Bull. Chem. Soc. Jpn. 44 (1971) 2332–2339. |
[16] | Lin, H.: Extremal Wiener index of trees with given number of vertices of even degree. MATCH Commun. Math. Comput. Chem. 72, 311–320 (2014). |
[17] | E. V. Konstantinova. Chemical Hypergraph theory. Pohang Univ. Sci. Tech, Pohang. 2001. |
[18] | H. Lin, B. Zhou. Distance spectral radius of uniform hypergraphs. Lin. Algebra Appl. 506 (2016) 564–578. |
[19] | J. Plesnik. On the sum of all distances in a graph or digraph. J. Graph Theory. 8 (1984) 1–21. |
[20] | D. H. Rouvray, Predicting chemistry from topology, Sci. Am. 255 (1986) 40–47. |
[21] | Hamzeh, A., Hossein-Zadeh, S., Ashrafifi, A. R.: Extremal graphs underWiener-type invariants. MATCH Commun. Math. Comput. Chem. 69, 47–54 (2013). |
[22] | Lin, H.: On the Wiener index of trees with given number of branching vertices. MATCH Commun. Math. Comput. Chem. 72, 301–310 (2014). |
[23] | Nadjafifi-Arani, M. J., Khodashenas, H., Ashrafifi, A. R.: A new method for computing Wiener index of dendrimer nanostars. MATCH Commun. Math. Comput. Chem. 69, 159–164 (2013). |
[24] | Rodriguez, J. A.: On the Wiener index and the eccentric distance sum of hypergraphs. MATH Commun. Math. Comput. Chem. 54, 209–220 (2005). |
[25] | Škrekovski, R., Gutman, I.: Vertex version of the Wiener theorem. MATCH Commun. Math. Comput. Chem. 72, 295–300 (2014). |
[26] | Tepavcevic, S., Wroble, A. T., Bissen, M., Wallace, D. J., Choi, Y., Hanley, L.: Photoemission studies of polythiophene and polyphenyl fifilms produced via surface polymerization by ion-assisted deposition. J. Phys. Chem. B. 109 (15), 7134–7140 (2005). |
APA Style
Yalan Li, Bo Deng, Chengfu Ye, Feng Fu, Huilong Chen. (2019). The Fifth Maximum Wiener Index of Uniform Hypergraphs. American Journal of Mathematical and Computer Modelling, 4(3), 74-82. https://doi.org/10.11648/j.ajmcm.20190403.14
ACS Style
Yalan Li; Bo Deng; Chengfu Ye; Feng Fu; Huilong Chen. The Fifth Maximum Wiener Index of Uniform Hypergraphs. Am. J. Math. Comput. Model. 2019, 4(3), 74-82. doi: 10.11648/j.ajmcm.20190403.14
AMA Style
Yalan Li, Bo Deng, Chengfu Ye, Feng Fu, Huilong Chen. The Fifth Maximum Wiener Index of Uniform Hypergraphs. Am J Math Comput Model. 2019;4(3):74-82. doi: 10.11648/j.ajmcm.20190403.14
@article{10.11648/j.ajmcm.20190403.14, author = {Yalan Li and Bo Deng and Chengfu Ye and Feng Fu and Huilong Chen}, title = {The Fifth Maximum Wiener Index of Uniform Hypergraphs}, journal = {American Journal of Mathematical and Computer Modelling}, volume = {4}, number = {3}, pages = {74-82}, doi = {10.11648/j.ajmcm.20190403.14}, url = {https://doi.org/10.11648/j.ajmcm.20190403.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmcm.20190403.14}, abstract = {Hypergraph theory has been found many applications in chemistry. As an important descriptor of molecular structures, the Wiener index of a graph also has many applications. The Wiener index of a connected hypergraph is defined as the summation of distances between all pairs of vertices. If each edge contains exactly k vertices, then a hypergraph G is called k-uniform. A hypertree is a connected hypergraph with no cycles. For k-uniform hypertree, H. Guo, B. Zhou et al. have determined the first, second and third maximum and minimum Wiener indices of uniform hypertrees. And give the unique structure of the k-uniform hypertree corresponding to the Wiener index, Moreover, in this paper, We first find out the relationship between the first few Wiener indices, then according to the structure of the graph, determine the unique k-uniform hypertree with the fifth maximum Wiener index. Through the determination of the fifth Wienr index k-uniform hypertree, the structure of the NTH Wiener index k-uniform hypertree can be found.}, year = {2019} }
TY - JOUR T1 - The Fifth Maximum Wiener Index of Uniform Hypergraphs AU - Yalan Li AU - Bo Deng AU - Chengfu Ye AU - Feng Fu AU - Huilong Chen Y1 - 2019/09/10 PY - 2019 N1 - https://doi.org/10.11648/j.ajmcm.20190403.14 DO - 10.11648/j.ajmcm.20190403.14 T2 - American Journal of Mathematical and Computer Modelling JF - American Journal of Mathematical and Computer Modelling JO - American Journal of Mathematical and Computer Modelling SP - 74 EP - 82 PB - Science Publishing Group SN - 2578-8280 UR - https://doi.org/10.11648/j.ajmcm.20190403.14 AB - Hypergraph theory has been found many applications in chemistry. As an important descriptor of molecular structures, the Wiener index of a graph also has many applications. The Wiener index of a connected hypergraph is defined as the summation of distances between all pairs of vertices. If each edge contains exactly k vertices, then a hypergraph G is called k-uniform. A hypertree is a connected hypergraph with no cycles. For k-uniform hypertree, H. Guo, B. Zhou et al. have determined the first, second and third maximum and minimum Wiener indices of uniform hypertrees. And give the unique structure of the k-uniform hypertree corresponding to the Wiener index, Moreover, in this paper, We first find out the relationship between the first few Wiener indices, then according to the structure of the graph, determine the unique k-uniform hypertree with the fifth maximum Wiener index. Through the determination of the fifth Wienr index k-uniform hypertree, the structure of the NTH Wiener index k-uniform hypertree can be found. VL - 4 IS - 3 ER -