Previous investigation has proposed that Antrodia Camphorata possesses beneficial effect mainly on liver protection. To date, the antioxidative effect of Antrodia Camphorata on the tissues of brain, kidney, lung, and liver, however, has not yet clarified. In this current experiment, eighty male Sprague-Dawley rats were randomly divided into control and Antrodia Camphorate-treated subject. Both subjects were intraperitoneally injected with normal saline and Antrodia Camphorata for consecutive 14 days, respectively. On day 15, rats were sacrificed and tissues of brain, kidney, lung, and liver were immediately harvested and homogenate. The malondialdehyde level, an end-product of lipid peroxidation, was measured in different tissues. Experimental result showed that the malondialdehyde levels were significantly (P < 0.05) reduced in all tissues after receiving Antrodia Camphorate as compared with the control subject. Specifically, an obvious decline (12.93%) of the malondialdehyde level was found in the brain as compared to the tissues of kidney, lung, and liver. Accordingly, our present result indicates that Antrodia Camphorate can significantly decline oxidative damage as presented by a reduced malondialdehyde levels in the tissues of brain, kidney, lung, and liver. In addition, it seems likely that the best tissue protective efficacy offered by Antrodia Camphorate in declining oxidative damage is found in the brain tissue.
Published in | American Journal of Laboratory Medicine (Volume 3, Issue 1) |
DOI | 10.11648/j.ajlm.20180301.12 |
Page(s) | 6-10 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Antrodia Camphorata, Lipid Peroxidation, Antioxidative Effect, Malondialdehyde
[1] | Shen, Y. C., Chou, C. J., Wang, Y. H., Chen, C. F., Chou, Y. C., & Lu, M. K. (2004). Anti-inflammatory activity of the extracts from mycelia of Antrodia camphorata cultured with water-soluble fractions from five different Cinnamomum species. FEMS Microbiol Lett, 231 (1), 137-143. |
[2] | Lee, J. J., Hsu, W. H., Yen, T. L., Chang, N. C., Luo, Y. J., Hsiao, G., & Sheu, J. R. (2011). Traditional Chinese medicine, Xue-Fu-Zhu-Yu decoction, potentiates tissue plasminogen activator against thromboembolic stroke in rats. J Ethnopharmacol, 134 (3), 824-830. |
[3] | Cuzzocrea, S., Riley, D. P., Caputi, A. P., & Salvemini, D. (2001). Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacological reviews, 53 (1), 135-159. |
[4] | Hsiao, G., Shen, M.-Y., Lin, K.-H., Lan, M.-H., Wu, L.-Y., Chou, D.-S., Sheu, J.-R. (2003). Antioxidative and hepatoprotective effects of Antrodia camphorata extract. Journal of agricultural and food chemistry, 51 (11), 3302-3308. |
[5] | Cheng, P.-C., Hsu, C.-Y., Chen, C.-C., & Lee, K.-M. (2008). In vivo immunomodulatory effects of Antrodia camphorata polysaccharides in a T1/T2 doubly transgenic mouse model for inhibiting infection of Schistosoma mansoni. Toxicology and Applied Pharmacology, 227 (2), 291-298. |
[6] | Hseu, Y.-C., Yang, H.-L., Lai, Y.-C., Lin, J.-G., Chen, G.-W., & Chang, Y.-H. (2004). Induction of apoptosis by Antrodia camphorata in human premyelocytic leukemia HL-60 cells. Nutrition and Cancer, 48 (2), 189-197. |
[7] | Song, T.-Y., & Yen, G.-C. (2003). Protective effects of fermented filtrate from Antrodia camphorata in submerged culture against CCl4-induced hepatic toxicity in rats. Journal of agricultural and food chemistry, 51 (6), 1571-1577. |
[8] | Hsu, Y.-L., Kuo, Y.-C., Kuo, P.-L., Ng, L.-T., Kuo, Y.-H., & Lin, C.-C. (2005). Apoptotic effects of extract from Antrodia camphorata fruiting bodies in human hepatocellular carcinoma cell lines. Cancer letters, 221 (1), 77-89. |
[9] | Malik, Z. A., Singh, M., & Sharma, P. (2011). Neuroprotective effect of Momordica charantia in global cerebral ischemia and reperfusion induced neuronal damage in diabetic mice. Journal of Ethnopharmacology, 133 (2), 729-734. |
[10] | Lee, Y.-M., Chang, C.-Y., Yen, T.-L., Geraldine, P., Lan, C.-C., Sheu, J.-R., & Lee, J.-J. (2014). Extract of Antrodia camphorata exerts neuroprotection against embolic stroke in rats without causing the risk of hemorrhagic incidence. The Scientific World Journal, 2014. |
[11] | Hsiao, G., Lin, K. H., Chang, Y., Chen, T. L., Tzu, N. H., Chou, D. S., & Sheu, J. R. (2005). Protective mechanisms of inosine in platelet activation and cerebral ischemic damage. Arteriosclerosis, thrombosis, and vascular biology, 25 (9), 1998-2004. |
[12] | Huang, F.-P., Xi, G., Keep, R. F., Hua, Y., Nemoianu, A., & Hoff, J. T. (2002). Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. Journal of neurosurgery, 96 (2), 287-293. |
[13] | Nazıroğlu, M., Kutluhan, S., Uğuz, A. C., Çelik, Ö., Bal, R., & Butterworth, P. J. (2009). Topiramate and vitamin E modulate the electroencephalographic records, brain microsomal and blood antioxidant redox system in pentylentetrazol-induced seizure of rats. Journal of Membrane Biology, 229 (3), 131-140. |
[14] | Limón-Pacheco, J., & Gonsebatt, M. E. (2009). The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 674 (1), 137-147. |
[15] | Sun, A. Y., Wang, Q., Simonyi, A., & Sun, G. Y. (2008). Botanical phenolics and brain health. Neuromolecular medicine, 10 (4), 259-274. |
[16] | Özcelik, D., Uzun, H., & Nazıroglu, M. (2012). N-acetylcysteine attenuates copper overload-induced oxidative injury in brain of rat. Biological trace element research, 147 (1-3), 292-298. |
[17] | Meneghini, R. (1997). Iron homeostasis, oxidative stress, and DNA damage. Free Radical Biology and Medicine, 23 (5), 783-792. |
[18] | Fang, K.-M., Cheng, F.-C., Huang, Y.-L., Chung, S.-Y., Jian, Z.-Y., & Lin, M.-C. (2013). Trace element, antioxidant activity, and lipid peroxidation levels in brain cortex of gerbils after cerebral ischemic injury. Biological trace element research, 152 (1), 66-74. |
APA Style
Mei-Min Shiu, Bo-Yu Huang, Chien-Chi Liu, Chin-Sheng Liao, Ming-Cheng Lin. (2017). Protective Effect of Antrodia Camphorate on the Tissues of Brain, Kidney, Lung, and Liver Is Correlated with Declining Lipid Peroxidation. American Journal of Laboratory Medicine, 3(1), 6-10. https://doi.org/10.11648/j.ajlm.20180301.12
ACS Style
Mei-Min Shiu; Bo-Yu Huang; Chien-Chi Liu; Chin-Sheng Liao; Ming-Cheng Lin. Protective Effect of Antrodia Camphorate on the Tissues of Brain, Kidney, Lung, and Liver Is Correlated with Declining Lipid Peroxidation. Am. J. Lab. Med. 2017, 3(1), 6-10. doi: 10.11648/j.ajlm.20180301.12
AMA Style
Mei-Min Shiu, Bo-Yu Huang, Chien-Chi Liu, Chin-Sheng Liao, Ming-Cheng Lin. Protective Effect of Antrodia Camphorate on the Tissues of Brain, Kidney, Lung, and Liver Is Correlated with Declining Lipid Peroxidation. Am J Lab Med. 2017;3(1):6-10. doi: 10.11648/j.ajlm.20180301.12
@article{10.11648/j.ajlm.20180301.12, author = {Mei-Min Shiu and Bo-Yu Huang and Chien-Chi Liu and Chin-Sheng Liao and Ming-Cheng Lin}, title = {Protective Effect of Antrodia Camphorate on the Tissues of Brain, Kidney, Lung, and Liver Is Correlated with Declining Lipid Peroxidation}, journal = {American Journal of Laboratory Medicine}, volume = {3}, number = {1}, pages = {6-10}, doi = {10.11648/j.ajlm.20180301.12}, url = {https://doi.org/10.11648/j.ajlm.20180301.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajlm.20180301.12}, abstract = {Previous investigation has proposed that Antrodia Camphorata possesses beneficial effect mainly on liver protection. To date, the antioxidative effect of Antrodia Camphorata on the tissues of brain, kidney, lung, and liver, however, has not yet clarified. In this current experiment, eighty male Sprague-Dawley rats were randomly divided into control and Antrodia Camphorate-treated subject. Both subjects were intraperitoneally injected with normal saline and Antrodia Camphorata for consecutive 14 days, respectively. On day 15, rats were sacrificed and tissues of brain, kidney, lung, and liver were immediately harvested and homogenate. The malondialdehyde level, an end-product of lipid peroxidation, was measured in different tissues. Experimental result showed that the malondialdehyde levels were significantly (P < 0.05) reduced in all tissues after receiving Antrodia Camphorate as compared with the control subject. Specifically, an obvious decline (12.93%) of the malondialdehyde level was found in the brain as compared to the tissues of kidney, lung, and liver. Accordingly, our present result indicates that Antrodia Camphorate can significantly decline oxidative damage as presented by a reduced malondialdehyde levels in the tissues of brain, kidney, lung, and liver. In addition, it seems likely that the best tissue protective efficacy offered by Antrodia Camphorate in declining oxidative damage is found in the brain tissue.}, year = {2017} }
TY - JOUR T1 - Protective Effect of Antrodia Camphorate on the Tissues of Brain, Kidney, Lung, and Liver Is Correlated with Declining Lipid Peroxidation AU - Mei-Min Shiu AU - Bo-Yu Huang AU - Chien-Chi Liu AU - Chin-Sheng Liao AU - Ming-Cheng Lin Y1 - 2017/12/14 PY - 2017 N1 - https://doi.org/10.11648/j.ajlm.20180301.12 DO - 10.11648/j.ajlm.20180301.12 T2 - American Journal of Laboratory Medicine JF - American Journal of Laboratory Medicine JO - American Journal of Laboratory Medicine SP - 6 EP - 10 PB - Science Publishing Group SN - 2575-386X UR - https://doi.org/10.11648/j.ajlm.20180301.12 AB - Previous investigation has proposed that Antrodia Camphorata possesses beneficial effect mainly on liver protection. To date, the antioxidative effect of Antrodia Camphorata on the tissues of brain, kidney, lung, and liver, however, has not yet clarified. In this current experiment, eighty male Sprague-Dawley rats were randomly divided into control and Antrodia Camphorate-treated subject. Both subjects were intraperitoneally injected with normal saline and Antrodia Camphorata for consecutive 14 days, respectively. On day 15, rats were sacrificed and tissues of brain, kidney, lung, and liver were immediately harvested and homogenate. The malondialdehyde level, an end-product of lipid peroxidation, was measured in different tissues. Experimental result showed that the malondialdehyde levels were significantly (P < 0.05) reduced in all tissues after receiving Antrodia Camphorate as compared with the control subject. Specifically, an obvious decline (12.93%) of the malondialdehyde level was found in the brain as compared to the tissues of kidney, lung, and liver. Accordingly, our present result indicates that Antrodia Camphorate can significantly decline oxidative damage as presented by a reduced malondialdehyde levels in the tissues of brain, kidney, lung, and liver. In addition, it seems likely that the best tissue protective efficacy offered by Antrodia Camphorate in declining oxidative damage is found in the brain tissue. VL - 3 IS - 1 ER -