Introduction: Psoriatic arthritis (PsA) is a chronic inflammatory disease associated with heightened cardiovascular morbidity, primarily due to accelerated atherosclerosis. Despite increasing evidence linking PsA to endothelial dysfunction, dyslipidemia, and chronic inflammation, cardiovascular risk assessment in PsA remains underdeveloped. This literature review synthesizes current evidence on the shared pathophysiological mechanisms between PsA and atherosclerosis. Materials and methods: A systematic search of PubMed, MEDLINE, Embase, Cochrane Library, Web of Science, and Scopus was conducted to identify studies published between 1990 and 2025. Studies were selected based on relevance to inflammatory pathways, lipid metabolism, and immune-mediated endothelial dysfunction in PsA-related atherosclerosis. Results: PsA contributes to atherosclerosis through persistent systemic inflammation, driven by key cytokines such as IL-17, IL-23, TNF-α, and IL-22. These mediators promote endothelial dysfunction, increased leukocyte adhesion, and plaque formation. Altered lipid metabolism in PsA patients, particularly dysfunctional HDL characterized by impaired cholesterol efflux and pro-inflammatory modifications, further exacerbates cardiovascular risk. Additionally, a disrupted Th17/Treg balance perpetuates vascular inflammation and atherogenesis. The interplay between immune dysregulation and metabolic alterations underscores the systemic nature of PsA and its cardiovascular complications. Conclusion: PsA-associated systemic inflammation accelerates atherosclerosis through immune-mediated endothelial dysfunction and lipid metabolism disturbances. Current cardiovascular risk assessment models fail to capture this increased burden. Targeting IL-17, IL-23, and TNF-α, alongside restoring HDL functionality, may offer novel therapeutic strategies. Future research should focus on longitudinal studies to better characterize cardiovascular outcomes in PsA patients and guide tailored interventions to mitigate atherosclerotic risk.
Published in | American Journal of BioScience (Volume 13, Issue 2) |
DOI | 10.11648/j.ajbio.20251302.13 |
Page(s) | 55-68 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Psoriatic Arthritis, Atherosclerosis, Cardiovascular Risk, Endothelial Dysfunction
[1] | Gelfand JM, Gladman DD, Mease PJ, Smith N, Margolis DJ, Nijsten T, Stern RS, Feldman SR, Rolstad T. Epidemiology of psoriatic arthritis in the population of the United States. J Am Acad Dermatol 2005; 53: 573.e1-573.e13. |
[2] | Fagerli KM, Kearsley-Fleet L, Mercer LK, Watson K, Packham J, Symmons DPM, Hyrich KL. Malignancy and mortality rates in patients with severe psoriatic arthritis requiring tumour-necrosis factor alpha inhibition: results from the British Society for Rheumatology Biologics Register. Rheumatology 2019; 58: 80-5. |
[3] | Polachek A, Touma Z, Anderson M, Eder L. Risk of Cardiovascular Morbidity in Patients With Psoriatic Arthritis: A Meta-Analysis of Observational Studies. Arthritis Care Res 2017; 69: 67-74. |
[4] | Di Minno MND, Ambrosino P, Lupoli R, Di Minno A, Tasso M, Peluso R, Tremoli E. Cardiovascular risk markers in patients with psoriatic arthritis: A meta-analysis of literature studies. Ann Med 2015; 47: 346-53. |
[5] | Azuaga AB, Ramírez J, Cañete JD. Psoriatic Arthritis: Pathogenesis and Targeted Therapies. Int J Mol Sci 2023; 24. |
[6] | Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, Tokgözoğlu L, Lewis EF. Atherosclerosis. Nat Rev Dis Prim 2019; 5. |
[7] | Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, Olaetxea JR, Alloza I, Vandenbroeck K, Benito-Vicente A, Martín C. Pathophysiology of Atherosclerosis. Int J Mol Sci 2022; 23: 3346. |
[8] | Lin J, Kakkar V, Lu X. Impact of MCP-1 in atherosclerosis. Curr Pharm Des 2014; 20: 4580-8. |
[9] | Gräbner R, Lötzer K, Döpping S, Hildner M, Radke D, Beer M, Spanbroek R, Lippert B, Reardon CA, Getz GS, Fu YX, Hehlgans T, Mebius RE, Van Wall M Der, Kruspe D, Englert C, Lovas A, Hu D, Randolph GJ, Weih F, Habenicht AJR. Lymphotoxin beta receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE-/- mice. J Exp Med 2009; 206: 233-48. |
[10] | Bennett MR, Sinha S, Owens GK. Vascular Smooth Muscle Cells in Atherosclerosis. Circ Res 2016; 118: 692-702. |
[11] | MR L, DB T, GT D, RH P, TJ P. Arterial embolism. Int J Crit Illn Inj Sci 2013; 3: 449-62. |
[12] | Martin AA, Padgett JK, Mayo KB. Koebner Phenomenon. Consultant 2022; 51: 409. |
[13] | Dombrowski Y, Schauber J. Cathelicidin LL-37: a defense molecule with a potential role in psoriasis pathogenesis. Exp Dermatol 2012; 21: 327-30. |
[14] | Fuentes-Duculan J, Suárez-Farĩas M, Zaba LC, Nograles KE, Pierson KC, Mitsui H, Pensabene CA, Kzhyshkowska J, Krueger JG, Lowes MA. A subpopulation of CD163-positive macrophages is classically activated in psoriasis. J Invest Dermatol 2010; 130: 2412-22. |
[15] | Liu C, Chen H, Liu Y, Huang H, Yu W, Du T, Long X, Chen X, Chen Z, Guo S, Li J, Jiang Z, Wang L, Lu C. Immunity: Psoriasis comorbid with atherosclerosis. Front Immunol 2022; 13: 1070750. |
[16] | Sun L, He C, Nair L, Yeung J, Egwuagu CE. Interleukin 12 (IL-12) Family Cytokines: Role in Immune Pathogenesis and Treatment of CNS Autoimmune Disease. Cytokine 2015; 75: 249. |
[17] | Lowes MA, Suárez-Fariñas M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol 2014; 32: 227-55. |
[18] | Wang KS, Frank DA, Ritz J. Interleukin-2 enhances the response of natural killer cells to interleukin-12 through up-regulation of the interleukin-12 receptor and STAT4. Blood 2000; 95: 3183-90. |
[19] | Hansson GK, Robertson AKL, Söderberg-Nauclér C. Inflammation and atherosclerosis. Annu Rev Pathol 2006; 1: 297-329. |
[20] | Hao X rui, Cao D li, Hu Y wei, Li X xu, Liu X hong, Xiao J, Liao D fang, Xiang J, Tang C ke. IFN-gamma down-regulates ABCA1 expression by inhibiting LXRalpha in a JAK/STAT signaling pathway-dependent manner. Atherosclerosis 2009; 203: 417-28. |
[21] | Hauer AD, Uyttenhove C, De Vos P, Stroobant V, Renauld JC, Van Berkel UC, Van Snick J, Kuiper J. Blockade of interleukin-12 function by protein vaccination attenuates atherosclerosis. Circulation 2005; 112: 1054-62. |
[22] | Noha Abdelhalim Elsawy A, Helal A, El Shafei M, Lewis Mikhael N, Ahmed Aboeladl N, Nesrin Ahmed Aboeladl C, Al sika Al Hadid Al Gharbia Al H. Serum Interleukin 23 in Psoriatic Arthritis Patients Bibliogr Akt Rheumatol 2020; 45: 460-6. |
[23] | Gil-Pulido J, Amézaga N, Jorgacevic I, Manthey HD, Rösch M, Brand T, Cidlinsky P, Schäfer S, Beilhack A, Saliba AE, Lorenz K, Boon L, Prinz I, Waisman A, Korn T, Cochain C, Zernecke A. Interleukin-23 receptor expressing γδ T cells locally promote early atherosclerotic lesion formation and plaque necrosis in mice. Cardiovasc Res 2022; 118: 2932-45. |
[24] | Abbas A, Gregersen I, Holm S, Daissormont I, Bjerkeli V, Krohg-Sørensen K, Skagen KR, Dahl TB, Russell D, Almås T, Bundgaard D, Alteheld LH, Rashidi A, Dahl CP, Michelsen AE, Biessen EA, Aukrust P, Halvorsen B, Skjelland M. Sinterleukin 23 levels are increased in carotid atherosclerosis possible role for the interleukin 23/interleukin 17 axis. Stroke 2015; 46: 793-9. |
[25] | Iwakura Y, Ishigame H. The IL-23/IL-17 axis in inflammation. J Clin Invest 2006; 116: 1218. |
[26] | Behzadi P, Behzadi E, Ranjbar R. IL-12 Family Cytokines: General Characteristics, Pathogenic Microorganisms, Receptors, and Signalling Pathways. Acta Microbiol Immunol Hung 2016; 63: 1-25. |
[27] | Durant L, Watford WT, Ramos HL, Laurence A, Vahedi G, Wei L, Takahashi H, Sun HW, Kanno Y, Powrie F, O’Shea JJ. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity 2010; 32: 605-15. |
[28] | Ortega C, Fernández-A S, Carrillo JM, Romero P, Molina IJ, Moreno JC, Santamaría M. IL-17-producing CD8+ T lymphocytes from psoriasis skin plaques are cytotoxic effector cells that secrete Th17-related cytokines. J Leukoc Biol 2009; 86: 435-43. |
[29] | Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005; 201: 233-40. |
[30] | Fitch E, Harper E, Skorcheva I, Kurtz SE, Blauvelt A. Pathophysiology of Psoriasis: Recent Advances on IL-23 and Th17 Cytokines. Curr Rheumatol Rep 2007; 9: 461. |
[31] | Hu P, Wang M, Gao H, Zheng A, Li J, Mu D, Tong J. The Role of Helper T Cells in Psoriasis. Front Immunol 2021; 12: 788-940. |
[32] | Li B, Huang L, Lv P, Li X, Liu G, Chen Y, Wang Z, Qian X, Shen Y, Li Y, Fang W. The role of Th17 cells in psoriasis. Immunol Res 2020; 68: 296-309. |
[33] | Pinto Tasende JA, Fernandez-Moreno M, Vazquez-Mosquera ME, Fernandez-Lopez JC, Oreiro-Villar N, De Toro Santos FJ, Blanco-García FJ. Increased synovial immunohistochemistry reactivity of TGF-β1 in erosive peripheral psoriatic arthritis. BMC Musculoskelet Disord 2023; 24: 246. |
[34] | Pietrzak A, Chabros P, Grywalska E, Pietrzak D, Kandzierski G, Wawrzycki B, Roliński J, Gawęda K, Krasowska D. Serum concentration of interleukin 6 is related to inflammation and dyslipidemia in patients with psoriasis. Adv Dermatology Allergol Dermatologii I Alergol 2020; 37: 41. |
[35] | Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441: 235-8. |
[36] | Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 2007; 25: 821-52. |
[37] | Moseley TA, Haudenschild DR, Rose L, Reddi AH. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev 2003; 14: 155-74. |
[38] | Craik DJ, Daly NL, Waine C. The cystine knot motif in toxins and implications for drug design. Toxicon 2001; 39: 43-60. |
[39] | Gaffen SL. Recent advances in the IL-17 cytokine family. Curr Opin Immunol 2011; 23: 613-9. |
[40] | Zhang B, Liu C, Qian W, Han Y, Li X, Deng J. Crystal structure of interleukin 17 receptor B SEFIR domain. J Immunol 2013; 190: 2320. |
[41] | Liu C, Qian W, Qian Y, Giltiay N V., Lu Y, Swaidani S, Misra S, Deng L, Chen ZJ, Li X. Act1, a novel U-box E3 ubiquitin ligase for IL-17R-mediated signalling. Sci Signal 2009; 2: ra63. |
[42] | Lai Y, Li D, Li C, Muehleisen B, Radek KA, Park HJ, Jiang Z, Li Z, Lei H, Quan Y, Zhang T, Wu Y, Kotol P, Morizane S, Hata TR, Iwatsuki K, Tang C, Gallo RL. The Antimicrobial Protein REG3A Regulates Keratinocyte Proliferation and Differentiation after Skin Injury. Immunity 2012; 37: 10.1016/j.immuni.2012.04.010. |
[43] | Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, Fouser LA. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 2006; 203: 2271. |
[44] | Brembilla NC, Senra L, Boehncke WH. The IL-17 Family of Cytokines in Psoriasis: IL-17A and Beyond. Front Immunol 2018; 9: 1682. |
[45] | Chiricozzi A, Guttman-Yassky E, Suárez-Farĩas M, Nograles KE, Tian S, Cardinale I, Chimenti S, Krueger JG. Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J Invest Dermatol 2011; 131: 677-87. |
[46] | Raychaudhuri SP, Raychaudhuri SK, Genovese MC. IL-17 receptor and its functional significance in psoriatic arthritis. Mol Cell Biochem 2012; 359: 419-29. |
[47] | Noordenbos T, Yeremenko N, Gofita I, Van De Sande M, Tak PP, Caňete JD, Baeten D. Interleukin-17-positive mast cells contribute to synovial inflammation in spondylarthritis. Arthritis Rheum 2012; 64: 99-109. |
[48] | De Boer OJ, Van Der Meer JJ, Teeling P, Van Der Loos CM, Idu MM, Van Maldegem F, Aten J, Van Der Wal AC. Differential expression of interleukin-17 family cytokines in intact and complicated human atherosclerotic plaques. J Pathol 2010; 220: 499-508. |
[49] | Eid RE, Rao DA, Zhou J, Lo SFL, Ranjbaran H, Gallo A, Sokol SI, Pfau S, Pober JS, Tellides G. Interleukin-17 and interferon-gamma are produced concomitantly by human coronary artery-infiltrating T cells and act synergistically on vascular smooth muscle cells. Circulation 2009; 119: 1424-32. |
[50] | van Es T, van Puijvelde GHM, Ramos OH, Segers FME, Joosten LA, van den Berg WB, Michon IM, de Vos P, van Berkel TJC, Kuiper J. Attenuated atherosclerosis upon IL-17R signaling disruption in LDLr deficient mice. Biochem Biophys Res Commun 2009; 388: 261-5. |
[51] | Erbel C, Chen L, Bea F, Wangler S, Celik S, Lasitschka F, Wang Y, Böckler D, Katus HA, Dengler TJ. Inhibition of IL-17A Attenuates Atherosclerotic Lesion Development in ApoE-Deficient Mice. J Immunol 2009; 183: 8167-75. |
[52] | Duan L, Chen J, Xia Q, Chen L, Fan K, Sigdel KR, Fang M, Zheng F, Shi G, Gong F. IL-17 promotes Type 1 T cell response through modulating dendritic cell function in acute allograft rejection. Int Immunopharmacol 2014; 20: 290-7. |
[53] | Hot A, Lenief V, Miossec P. Combination of IL-17 and TNFα induces a pro-inflammatory, pro-coagulant and pro-thrombotic phenotype in human endothelial cells. Ann Rheum Dis 2012; 71: 768-76. |
[54] | Miyagawa I, Nakayamada S, Ueno M, Miyazaki Y, Iwata S, Kubo S, Sonomoto K, Anan J, Ohkubo N, Inoue Y, Tanaka Y. Impact of serum interleukin-22 as a biomarker for the differential use of molecular targeted drugs in psoriatic arthritis: a retrospective study. Arthritis Res Ther 2022; 24: 1-10. |
[55] | Sabat R, Ouyang W, Wolk K. Therapeutic opportunities of the IL-22-IL-22R1 system. Nat Rev Drug Discov 2014; 13: 21-38. |
[56] | Linton MF, Moslehi JJ, Babaev VR. Akt Signaling in Macrophage Polarization, Survival, and Atherosclerosis. Int J Mol Sci 2019; 20. |
[57] | Kastelein RA, Hunter CA, Cua DJ. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol 2007; 25: 221-42. |
[58] | Sims JE, Smith DE. The IL-1 family: regulators of immunity. Nat Rev Immunol 2010; 10: 89-102. |
[59] | Fiocco U, Sfriso P, Oliviero F, Roux-Lombard P, Scagliori E, Cozzi L, Lunardi F, Calabrese F, Vezzù M, Dainese S, Molena B, Scanu A, Nardacchione R, Rubaltelli L, Dayer JM, Punzi L. Synovial effusion and synovial fluid biomarkers in psoriatic arthritis to assess intraarticular tumor necrosis factor-α blockade in the knee joint. Arthritis Res Ther 2010; 12: R148. |
[60] | Caproni M, Antiga E, Melani L, Volpi W, Del Bianco E, Fabbri P. Serum levels of IL-17 and IL-22 are reduced by etanercept, but not by acitretin, in patients with psoriasis: a randomized-controlled trial. J Clin Immunol 2009; 29: 210-4. |
[61] | Mitra A, Raychaudhuri SK, Raychaudhuri SP. Functional role of IL-22 in psoriatic arthritis. Arthritis Res Ther 2012; 14: R65. |
[62] | Eyerich S, Wagener J, Wenzel V, Scarponi C, Pennino D, Albanesi C, Schaller M, Behrendt H, Ring J, Schmidt-Weber CB, Cavani A, Mempel M, Traidl-Hoffmann C, Eyerich K. IL-22 and TNF-α represent a key cytokine combination for epidermal integrity during infection with Candida albicans. Eur J Immunol 2011; 41: 1894-901. |
[63] | van Hoeven V, Munneke JM, Cornelissen AS, Omar SZ, Spruit MJ, Kleijer M, Bernink JH, Blom B, Voermans C, Hazenberg MD. Mesenchymal Stromal Cells Stimulate the Proliferation and IL-22 Production of Group 3 Innate Lymphoid Cells. J Immunol 2018; 201: 1165-73. |
[64] | Lian S, Lu Y, Cheng Y, Yu T, Xie X, Liang H, Ye Y, Jia L. S-nitrosocaptopril interrupts adhesion of cancer cells to vascular endothelium by suppressing cell adhesion molecules via inhibition of the NF-кB and JAK/STAT signal pathways in endothelial cells. Eur J Pharmacol 2016; 791: 62-71. |
[65] | Yang FC, Chiu PY, Chen Y, Mak TW, Chen NJ. TREM-1-dependent M1 macrophage polarization restores intestinal epithelium damaged by DSS-induced colitis by activating IL-22-producing innate lymphoid cells. J Biomed Sci 2019; 26. |
[66] | Larrede S, Quinn CM, Jessup W, Frisdal E, Olivier M, Hsieh V, Kim MJ, Van Eck M, Couvert P, Carrie A, Giral P, Chapman MJ, Guerin M, Le Goff W. Stimulation of cholesterol efflux by LXR agonists in cholesterol-loaded human macrophages is ABCA1-dependent but ABCG1-independent. Arterioscler Thromb Vasc Biol 2009; 29: 1930-6. |
[67] | Chellan B, Yan L, Sontag TJ, Reardon CA, Hofmann Bowman MA. IL-22 is induced by S100/calgranulin and impairs cholesterol efflux in macrophages by downregulating ABCG1. J Lipid Res 2014; 55: 443-54. |
[68] | Agrawal S, Febbraio M, Podrez E, Cathcart MK, Stark GR, Chisolm GM. Signal transducer and activator of transcription 1 is required for optimal foam cell formation and atherosclerotic lesion development. Circulation 2007; 115: 2939-47. |
[69] | Ding X, Zheng L, Yang B, Wang X, Ying Y. Luteolin attenuates atherosclerosis via modulating signal transducer and activator of transcription 3-mediated inflammatory response. Drug Des Devel Ther 2019; 13: 3899-911. |
[70] | Rattik S, Hultman K, Rauch U, Söderberg I, Sundius L, Ljungcrantz I, Hultgårdh-Nilsson A, Wigren M, Björkbacka H, Fredrikson GN, Nilsson J. IL-22 affects smooth muscle cell phenotype and plaque formation in apolipoprotein E knockout mice. Atherosclerosis 2015; 242: 506-14. |
[71] | Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell 2008; 133: 775-87. |
[72] | Goodman WA, Young AB, McCormick TS, Cooper KD, Levine AD. Stat3 Phosphorylation Mediates Resistance of Primary Human T Cells to Regulatory T Cell Suppression. J Immunol 2011; 186: 3336-45. |
[73] | Goodman WA, Levine AD, Massari J V., Sugiyama H, McCormick TS, Cooper KD. IL-6 Signaling in Psoriasis Prevents Immune Suppression by Regulatory T Cells. J Immunol 2009; 183: 3170-6. |
[74] | Wang XY, Chen XY, Li J, Zhang HY, Liu J, Sun LD. MiR-200a expression in CD4+ T cells correlates with the expression of Th17/Treg cells and relevant cytokines in psoriasis vulgaris: A case control study. Biomed Pharmacother 2017; 93: 1158-64. |
[75] | Williams PT, Feldman DE. Prospective study of coronary heart disease vs. HDL2, HDL3, and other lipoproteins in Gofman’s Livermore Cohort. Atherosclerosis 2011; 214: 196-202. |
[76] | Arts E, Fransen J, Lemmers H, Stalenhoef A, Joosten L, van Riel P, Popa CD. High-density lipoprotein cholesterol subfractions HDL2 and HDL3 are reduced in women with rheumatoid arthritis and may augment the cardiovascular risk of women with RA: a cross-sectional study. Arthritis Res Ther 2012; 14. |
[77] | Zannis VI, Fotakis P, Koukos G, Kardassis D, Ehnholm C, Jauhiainen M, Chroni A. HDL biogenesis, remodeling, and catabolism. Handb Exp Pharmacol 2015; 224: 53-111. |
[78] | Sun Y, Zhang J, Zhai T, Li H, Li H, Huo R, Shen B, Wang B, Chen X, Li N, Teng J. CCN1 promotes IL-1β production in keratinocytes by activating p38 MAPK signaling in psoriasis. Sci Reports 2017 71 2017; 7: 1-10. |
[79] | Yin K, Liao D fang, Tang CK. ATP-Binding Membrane Cassette Transporter A1 (ABCA1): A Possible Link between Inflammation and Reverse Cholesterol Transport. Mol Med 2010 169 2010; 16: 438-49. |
[80] | Franssen R, Schimmel AWM, Van Leuven SI, Wolfkamp SCS, Stroes ESG, Dallinga-Thie GM. In Vivo Inflammation Does Not Impair ABCA1-Mediated Cholesterol Efflux Capacity of HDL. Cholesterol 2012; 2012: 610741. |
[81] | Skretting G, Gjernes E, Prydz H. Regulation of lecithin: cholesterol acyltransferase by TGF-beta and interleukin-6. Biochim Biophys Acta 1995; 1255: 267-72. |
[82] | Georgila K, Vyrla D, Drakos E. Apolipoprotein A-I (ApoA-I), Immunity, Inflammation and Cancer. Cancers 2019, Vol 11, Page 1097 2019; 11: 1097. |
[83] | Shao S, Chen J, Swindell WR, Tsoi LC, Xing X, Ma F, Uppala R, Sarkar MK, Plazyo O, Billi AC, Wasikowski R, Smith KM, Honore P, Scott VE, Maverakis E, Michelle Kahlenberg J, Wang G, Ward NL, Harms PW, Gudjonsson JE. Phospholipase A2 enzymes represent a shared pathogenic pathway in psoriasis and pityriasis rubra pilaris. JCI Insight 2021; 6. |
[84] | Rosenson RS, Hurt-Camejo E. Phospholipase A2 enzymes and the risk of atherosclerosis. Eur Heart J 2012; 33: 2899-909. |
[85] | Zuliani G, Vigna GB, Fellin R. The anti-atherogenic properties of HDL particles. Int Congr Ser 2007; 1303: 103-10. |
[86] | Yan J, Yang S, Han L, Ba X, Shen P, Lin W, Li T, Zhang R, Huang Y, Huang Y, Qin K, Wang Y, Tu S, Chen Z. Dyslipidemia in rheumatoid arthritis: the possible mechanisms. Front Immunol 2023; 14: 1254753. |
[87] | Lehti M, Donelan E, Abplanalp W, Al-Massadi O, Habegger KM, Weber J, Ress C, Mansfeld J, Somvanshi S, Trivedi C, Keuper M, Ograjsek T, Striese C, Cucuruz S, Pfluger PT, Krishna R, Gordon SM, Silva RAGD, Luquet S, Castel J, Martinez S, D’Alessio D, Davidson WS, Hofmann SM. High-density lipoprotein maintains skeletal muscle function by modulating cellular respiration in mice. Circulation 2013; 128: 2364-71. |
[88] | Xia P, Vadas MA, Rye KA, Barter PJ, Gamble JR. High density lipoproteins (HDL) interrupt the sphingosine kinase signaling pathway. A possible mechanism for protection against a therosclerosis by HDL. J Biol Chem 1999; 274: 33143-7. |
[89] | Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM. Antiinflammatory properties of HDL. Circ Res 2004; 95: 764-72. |
[90] | Knowlton N, Wages JA, Centola MB, Alaupovic P. Apolipoprotein-defined lipoprotein abnormalities in rheumatoid arthritis patients and their potential impact on cardiovascular disease. Scand J Rheumatol 2012; 41: 165-9. |
[91] | Yu N, Zhang S, Lu J, Li Y, Yi X, Tang L, Su L, Ding Y. Serum amyloid A, an acute phase protein, stimulates proliferative and proinflammatory responses of keratinocytes. Cell Prolif 2016; 50: e12320. |
[92] | Hou Y, Zhao W, Yang Z, Zhang B. Serum amyloid A (SAA) and Interleukin-6 (IL-6) as the potential biomarkers for gastric cancer. Medicine (Baltimore) 2022; 101: e31514. |
[93] |
Shah AS, Tan L, Long JL, Davidson WS. Proteomic diversity of high density lipoproteins: Our emerging understanding of its importance in lipid transport and beyond. J Lipid Res 2013; 54: 2575-85.
https://doi.org/10.1194/JLR.R035725/ASSET/92D82A59-2974-4BA1-B2A2-627088FB0070/MAIN.ASSETS/GR2.JPG |
[94] | Chait A, Chang YH, Oram JF, Heinecke JW. Thematic review series: The Immune System and Atherogenesis. Lipoprotein-associated inflammatory proteins: markers or mediators of cardiovascular disease? J Lipid Res 2005; 46: 389-403. |
[95] | Wittwer J, Bradley D. Clusterin and Its Role in Insulin Resistance and the Cardiometabolic Syndrome. Front Immunol 2021; 12: 612496. |
[96] | Meng L, Song Z, Liu A, Dahmen U, Yang X, Fang H. Effects of Lipopolysaccharide-Binding Protein (LBP) Single Nucleotide Polymorphism (SNP) in Infections, Inflammatory Diseases, Metabolic Disorders and Cancers. Front Immunol 2021; 12: 681810. |
[97] | Holzer M, Wolf P, Curcic S, Birner-Gruenberger R, Weger W, Inzinger M, El-Gamal D, Wadsack C, Heinemann A, Marsche G. Psoriasis alters HDL composition and cholesterol efflux capacity. J Lipid Res 2012; 53: 1618-24. |
[98] | Maheshwari A. Immunologic and Hematological Abnormalities in Necrotizing Enterocolitis. Clin Perinatol 2015; 42: 567-85. |
[99] | SHAKOEI S, NAKHJAVANI M, MIRMIRANPOOR H, MOTLAGH MA, AZIZPOUR A, ABEDINI R. The Serum Level of Oxidative Stress and Antioxidant Markers in Patients with Psoriasis: A Cross-sectional Study. J Clin Aesthet Dermatol 2021; 14: 38. |
[100] | Fox PL, Mazumder B, Ehrenwald E, Mukhopadhyay CK. Ceruloplasmin and cardiovascular disease. Free Radic Biol Med 2000; 28: 1735-44. |
APA Style
Semionov, M., Russu, E. (2025). Pathophysiology of Atherosclerosis in Psoriatic Arthritis: New Insights into Inflammation and Lipid Metabolism. American Journal of BioScience, 13(2), 55-68. https://doi.org/10.11648/j.ajbio.20251302.13
ACS Style
Semionov, M.; Russu, E. Pathophysiology of Atherosclerosis in Psoriatic Arthritis: New Insights into Inflammation and Lipid Metabolism. Am. J. BioScience 2025, 13(2), 55-68. doi: 10.11648/j.ajbio.20251302.13
@article{10.11648/j.ajbio.20251302.13, author = {Marius Semionov and Eugeniu Russu}, title = {Pathophysiology of Atherosclerosis in Psoriatic Arthritis: New Insights into Inflammation and Lipid Metabolism }, journal = {American Journal of BioScience}, volume = {13}, number = {2}, pages = {55-68}, doi = {10.11648/j.ajbio.20251302.13}, url = {https://doi.org/10.11648/j.ajbio.20251302.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajbio.20251302.13}, abstract = {Introduction: Psoriatic arthritis (PsA) is a chronic inflammatory disease associated with heightened cardiovascular morbidity, primarily due to accelerated atherosclerosis. Despite increasing evidence linking PsA to endothelial dysfunction, dyslipidemia, and chronic inflammation, cardiovascular risk assessment in PsA remains underdeveloped. This literature review synthesizes current evidence on the shared pathophysiological mechanisms between PsA and atherosclerosis. Materials and methods: A systematic search of PubMed, MEDLINE, Embase, Cochrane Library, Web of Science, and Scopus was conducted to identify studies published between 1990 and 2025. Studies were selected based on relevance to inflammatory pathways, lipid metabolism, and immune-mediated endothelial dysfunction in PsA-related atherosclerosis. Results: PsA contributes to atherosclerosis through persistent systemic inflammation, driven by key cytokines such as IL-17, IL-23, TNF-α, and IL-22. These mediators promote endothelial dysfunction, increased leukocyte adhesion, and plaque formation. Altered lipid metabolism in PsA patients, particularly dysfunctional HDL characterized by impaired cholesterol efflux and pro-inflammatory modifications, further exacerbates cardiovascular risk. Additionally, a disrupted Th17/Treg balance perpetuates vascular inflammation and atherogenesis. The interplay between immune dysregulation and metabolic alterations underscores the systemic nature of PsA and its cardiovascular complications. Conclusion: PsA-associated systemic inflammation accelerates atherosclerosis through immune-mediated endothelial dysfunction and lipid metabolism disturbances. Current cardiovascular risk assessment models fail to capture this increased burden. Targeting IL-17, IL-23, and TNF-α, alongside restoring HDL functionality, may offer novel therapeutic strategies. Future research should focus on longitudinal studies to better characterize cardiovascular outcomes in PsA patients and guide tailored interventions to mitigate atherosclerotic risk. }, year = {2025} }
TY - JOUR T1 - Pathophysiology of Atherosclerosis in Psoriatic Arthritis: New Insights into Inflammation and Lipid Metabolism AU - Marius Semionov AU - Eugeniu Russu Y1 - 2025/04/17 PY - 2025 N1 - https://doi.org/10.11648/j.ajbio.20251302.13 DO - 10.11648/j.ajbio.20251302.13 T2 - American Journal of BioScience JF - American Journal of BioScience JO - American Journal of BioScience SP - 55 EP - 68 PB - Science Publishing Group SN - 2330-0167 UR - https://doi.org/10.11648/j.ajbio.20251302.13 AB - Introduction: Psoriatic arthritis (PsA) is a chronic inflammatory disease associated with heightened cardiovascular morbidity, primarily due to accelerated atherosclerosis. Despite increasing evidence linking PsA to endothelial dysfunction, dyslipidemia, and chronic inflammation, cardiovascular risk assessment in PsA remains underdeveloped. This literature review synthesizes current evidence on the shared pathophysiological mechanisms between PsA and atherosclerosis. Materials and methods: A systematic search of PubMed, MEDLINE, Embase, Cochrane Library, Web of Science, and Scopus was conducted to identify studies published between 1990 and 2025. Studies were selected based on relevance to inflammatory pathways, lipid metabolism, and immune-mediated endothelial dysfunction in PsA-related atherosclerosis. Results: PsA contributes to atherosclerosis through persistent systemic inflammation, driven by key cytokines such as IL-17, IL-23, TNF-α, and IL-22. These mediators promote endothelial dysfunction, increased leukocyte adhesion, and plaque formation. Altered lipid metabolism in PsA patients, particularly dysfunctional HDL characterized by impaired cholesterol efflux and pro-inflammatory modifications, further exacerbates cardiovascular risk. Additionally, a disrupted Th17/Treg balance perpetuates vascular inflammation and atherogenesis. The interplay between immune dysregulation and metabolic alterations underscores the systemic nature of PsA and its cardiovascular complications. Conclusion: PsA-associated systemic inflammation accelerates atherosclerosis through immune-mediated endothelial dysfunction and lipid metabolism disturbances. Current cardiovascular risk assessment models fail to capture this increased burden. Targeting IL-17, IL-23, and TNF-α, alongside restoring HDL functionality, may offer novel therapeutic strategies. Future research should focus on longitudinal studies to better characterize cardiovascular outcomes in PsA patients and guide tailored interventions to mitigate atherosclerotic risk. VL - 13 IS - 2 ER -