Often livestock activity is related to deforestation and loss of natural resources such as soil and water quality and quantity. The strategies that come from this perception seek the minimization of livestock effect of greenhouse gas emissions into the environment. Silvopastoral systems is been used as an alternative to increase tree cover on livestock farms, mitigate the effects of climate change, and make farmers more resilient to these. Tree cover plays an important role inside of this system, they can help with the optimization of the land use on the farm and it provides socioeconomical and environmental benefits to the farmers. Therefore, the objective of this study was to characterize livestock farms and the floristic composition of tree cover in the southeast region of Guatemala. This region belongs to the dry corridor of Central America and present high vulnerability to drought. Thirty farms were selected using seven criteria, on each farms a socioeconomical survey was applied to recollect biophysical, socioeconomical and productive information. Two groups of farms were identified: 1) farms with high level technological innovation (HLTI) and 2) farms with low level of technological innovation (LLTI). Tree data were obtained from individuals with diameter above breast height (DBH) of >5 cm. Composition, richness and abundance of tree species were evaluated using Q-Hill Diversity Index. Seven land uses were identified: scattered trees in paddocks, natural forest, agrisilvicultural systems, fodder banks, forest plantations, riparian forest and living fences. Study area were 790 ha in which there were 143 plots distributed randomly, living fences were present in 1.691 km (169.1 ha) with 44 transects. A total of 4,678 trees, from 37 families and 83 species, were found in the area. The most abundant families were Fabaceae and Pinaceae. The most common tree species for timber were Pinus spp and Quercus spp and for non-timber were Gliricidia sepium and Acacia pennatula. It was found that 77.27% of the total inventory is dominated by ten species. We conclude that farmers consider tree cover of importance, this is reflected in the 29% of tree cover found inside of natural forests, 26.2% in scattered trees in paddocks and 7.9% in forest plantations. There were marked differences of richness by individuals, density of species accumulated by land use and diametrical class.
Published in | American Journal of Agriculture and Forestry (Volume 7, Issue 2) |
DOI | 10.11648/j.ajaf.20190702.14 |
Page(s) | 66-77 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2019. Published by Science Publishing Group |
Dry Region, Floristic Composition, Livestock Farm Typologies, Richness and Abundance of Species, Silvopastoral Systems
[1] | FAO (Food and Agriculture Organization of the United Nations). 2016. Global forest resources assessment 2015: How are the world´s forests changing. Segunda edición ed. Roma, Italia. Consulted 28. Mar. 2018. Retrieved from http://www.fao.org/3/a-i4808e.pdf |
[2] | Cherrington, E; Hernández, B; García, B; Oyuela, M; Clemente, A. 2011. Land cover change and deforestation in Central America 1990-2008. Ciudad Panamá, Panamá. Consulted 28. Mar. 2018. Retrieved from https://servirglobal.net/Portals/0/Documents/Articles/Regional%20Assessment%20Rpts/servir_deforestation_1990-2008.pdf |
[3] | Monterroso, O; López, G; Gálvez, J. 2012. Análisis sistémico de la deforestación en Guatemala y propuesta de políticas para revertirla. Ciudad Guatemala, Guatemala. (Serie técnica No.38). Consulted 28. Mar. 2018. Retrieved from https://www.url.edu.gt/publicacionesurl/FileCS.ashx?Id=40402 |
[4] | FAO (Organización de las Naciones Unidas para la Agricultura y la Alimentación). 2018. El papel de la FAO en la producción animal (en línea). Roma, Italia. Consulted 20 May. 2018. Retrieved from http://www.fao.org/animal-production/es/ |
[5] | Acosta, A; Valdés, A. 2013. Lineamiento de políticas: Situación y perspectivas del sector ganadero en Centroamérica. In Acosta, A; Díaz, T. (eds.). Lineamientos de política para el desarrollo sostenible del sector ganadero. Food and Agriculture Organization of the United Nations (FAO), Roma, Italia. p. 7-19. |
[6] | Casasola Coto, F; Villanueva Najarro, C. 2015. Buenas prácticas: para la mitigación al cambio climático de los sistemas de producción de leche en Costa Rica. 1° ed. Turrialba, Costa Rica. 130 p. |
[7] | FAO (Food and Agriculture Organization of the United Nations). 2009. The state of food and agriculture. Livestock in the balance. Roma, Italia. Consulted 28. Mar. 2018. Retrieved from http://www.fao.org/docrep/012/i0680e/i0680e.pdf |
[8] | FAO (Food and Agriculture Organization of the United Nations).2015. Síntesis – Ganadería y los Objetivos de Desarrollo Sostenible. Roma, Italia. Consulted 5 of Feb. 2019. Retrieved from http://www.livestockdialogue.org/fileadmin/templates/res_livestock/docs/2016/Panama/FAO-AGAL_synthesis_Panama_Livestock_and_SDGs_SP.pdf |
[9] | Villanueva, C; Ibrahim, M; Harvey, C; Esquivel, H. 2003. Tipologías de fincas con ganadería bovina y cobertura arbórea en pasturas en el trópico seco de Costa Rica. Agroforestería en las Américas 10(39-40):9-16. |
[10] | Duffy Brittany, A. 2016. Trees in the Agricultural Matrix: Reforestation Processes in a Tropical Dry Landscape in Chinandega, Nicaragua. Tesis Máster. Florida, Estados Unidos de Norte América Florida International University. 95 p. Consulted 17 de mayo. 2018. Retrieved from http://10.25148/etd.FIDC000716 |
[11] | Russo, R; Botero, R. 2014. Ganadería de sombra: ¿mito o realidad? Ambientico 245:4-8. |
[12] | Sánchez D; Villanueva, C; Rusch, GM; Ibrahim, M; DeClerck, F. 2013. Estado del Recurso Arbóreo en Fincas Ganaderas y su Contribución en la Sostenibilidad de la Producción en Rivas, Nicaragua. Turrialba, Costa Rica. 50 p. |
[13] | PNUD (Programa de las Naciones Unidas para el Desarrollo). 2014. Manejo sostenible de bosques y múltiples beneficios globales. Cuidad Guatemala, Guatemala. Consulted 12. Mar. 2018. Retrieved from http://www.gt.undp.org/content/dam/guatemala/docs/prodocs/undp_gt_manejobosques.pdf |
[14] | Detlefsen, G; Marmillod, M; Scheelje, M; Ibrahim, M. 2012. Protocolo para la instalación de parcelas permanentes de medición de la producción maderable en sistemas agroforestales de Centroamérica. Turrialba, Costa Rica, CATIE. 36 p. (Serie Técnica. Manual Técnico no. 107). |
[15] | Snowdon Peter, RJ, Keith Heather, Ritson Peter, Grierson Pauline, Adams Mark, Montagu Kelvin, Bi Hui-quan, Burrows William, Eamus Derek 2002. Protocol for Sampling Tree and Stand Biomass. Australia (trad.) Australian Greenhouse Office Parkes, ACT. 76 p. No. 31. |
[16] | Corporación ganadera (CORFOGA). 2000. Análisis del censo ganadero 2000. San José, Costa Rica, 13 p. |
[17] | Eusse, JB. 2003. Pastos y forrajes tropicales producción y manejo. Agro-Ideagro, A (ed.). Colombia. 700 p. |
[18] | Di Rienzo J. A., Casanoves F., Balzarini M. G., Gonzalez L., Tablada M., Robledo C. W. (2008). InfoStat, versión 2008, Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. |
[19] | Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR., O'Hara R. B., Simpson GL., Solymos P, Stevens H M., Szoecs E, Wagner H. 2018. Community Ecology Package Consulted 10 May. 2018. Retrieved from https://cran.r-project.org, https://github.com/vegandevs/vegan |
[20] | Velasco-Fuenmayor, J; Ortega-Soto, L; Sánchez-Camarillo, E; Urdaneta, F. 2009. Influence Factors on the Current Technological Level in the Dual-Purpose Cattle Farms Located in the State of Zulia, Venezuela. _Revista Científica, FCV-LUZ / Vol. XIX, Nº 2, 187 – 195. |
[21] | Cannavoa, P; Sansoulet, J; Harmanda, J-M; Siles, P; Dreyerd, E; Vaasta, P. 2011. Agroforestry associating coffee and Inga densiflora results in complementarity for water uptake and decreases deep drainage in Costa Rica. Agriculture, Ecosystems and Environment (140):1–13. |
[22] | Benegas, L; Ilsted, U; Roupsard, O; Jones, J; Malmer, A. 2014. Effects of trees on infiltrability and preferential flow in two contrasting agroecosystems in Central America. Agriculture, Ecosystems and Environment(183):185– 196. |
[23] | Ong, C; Kho, R. 2015. A framework for quantifying the various effects of tree-crop interactions. Tree-crop interactions. Agroforestry in a Changing Climate. CAB International, Wallingford (2nd edition):1-23. |
[24] | Gustad, G; Dhillion, SS; Sidibé, D. 2004. Local use and cultural and economic value of products from trees in the parklands of the municipality of Cinzana, Mali. Economic Botany 4(58):578–587. |
[25] | Instituto Nacional de Bosques (INABb). 2018. PINPEP. Guatemala, Guatemala. Consulted 21 May.2018. Retrieved from http://186.151.231.170/inab/index.php/45-servicios-inab/120-pinpep |
[26] | Instituto Nacional de Bosques (INAB). 2018a. PINFOR. Guatemala, Guatemala. Consulted 21 May. 2018. Retrieved from http://186.151.231.170/inab/index.php/45-servicios-inab/74-pinfor |
[27] | Larrazábal, LB; Oliva, E; Ibrahim, M; Detlefsen, G. 2009. Programa de Incentivos Forestales (PINFOR) de Guatemala. In Sepúlveda, C; Muhammad, I (eds.). Políticas y sistemas de incentivos para el fomento y adopción de buenas prácticas agrícolas: como una medida de adaptación al cambio climático en América Central Turrialba, Costa Rica. p. 231-248. |
[28] | Australian Government Department of Agriculture, Fisheries and Forestry. 2003. Farm Forestry’s Role. Australia. 1-16 p. Consulted 21 May. 2018. Retrieved from http://www.agriculture.gov.au/SiteCollectionDocuments/forestry/plantation-farm/ffrole.pdf |
[29] | Ibrahim, M; Chacón, M; Cuartas, C; Naranjo, J; Ponce, G; Vega, P; Casasola, F; Rojas, J. 2006. Almacenamiento de carbono en el suelo y la biomasa aérea en sistemas de usos de la tierra en paisajes ganaderos de Colombia, Costa Rica y Nicaragua. Revista de Agroforestería en las Américas. 45:27-36. |
[30] | Harvey, CA; Villanueva, C; Esquivel, H; Gómez, R; Ibrahim, M; López, M; Martínez, J; Muñoz, D; Restrepo, C; Saénz, JC; Villacís, J; Sinclair, F. L. 2011. Conservation value of dispersed tree cover threatened by pasture management. Forest Ecology and Management 261:1664-1674. |
[31] | Harvey, CA; Villanueva, C; Ibrahim, M; Gómez, R; López, M; Kunth, S; Sinclair, F. L. 2008b. Productores, árboles y producción ganadera en paisajes de América Central: Implicaciones para la conservación de la biodiversidad. In Harvey, CA; Sáenz, JC (eds.). Evaluación y conservación de biodiversidad en paisajes fragmentados de Mesoamérica Heredia, Costa Rica. p. 197-224. |
[32] | Villacis, J; Harvey, C. A; Ibrahim, M; Villanueva, C. 2003. Relaciones entre la cobertura arbórea y el nivel de intensificación de las fincas ganaderas en Rio Frio, Costa Rica. Agroforestería en las Américas: 10:9-16. |
[33] | de Sousa, K; Detlefsen, G; Tobar, D; Melo, Ed; Filho, V; Casanoves, F. 2017. Population dynamic and management of Pinus oocarpa and Tabebuia rosea within silvopastoral systems in Central America. Agroforestry Systems. 91:1119–1127. Consulted 10 Jun. 2018. doi https://doi.org/10.1007/s10457-016-9988-x |
[34] | Muñoz, D; Harvey, CA; Sinclair, FL; Mora, J; Ibrahim, M. 2003. Conocimiento local de la cobertura arbórea en sistemas de producción ganadera en dos localidades de Costa Rica. Revista de Agroforestería en las Américas 10(39-40):61-68. |
[35] | Harvey, CA; Villanueva, C; Villacís, J; Chacón, M; Muñoz, D; López, M; Ibrahim, M; Gómez, R; Taylor, R; Martínez, J. Navas, A; Sáenz, J; Sánchez; Medina, A; Vílchez, S; Hernández, B; Pérez, A; Ruiz, F; López, F; Lang, I; Sinclair, F. L. 2005. Contribution of live fences to the ecological integrity of agricultural landscapes. Agriculture, ecosystems & environment 111(1):200-230. |
[36] | Harvey, CA; Guindon, C. F; Haber, W. A; DeRosier, D. H; Murray, K. G. 2008a. La importancia de los fragmentos de bosque, los arboles dispersos y las cortinas rompevientos para la biodiversidad local y regional: El caso de Monteverde, Costa Rica. In Harvey, CA; Sáenz, JC (eds.). Evaluación y conservación de biodiversidad en paisajes fragmentados de Mesoamérica Heredia, Costa Rica. p. 288-325. |
[37] | Villanueva, C; Detlefsen, G; Casasola, F. 2018. Potencial de los sistemas silvopastoriles en la mitigación al cambio climático y en la generación de múltiples beneficios en fincas ganaderas de Costa Rica. Turrialba, Costa Rica. 61 p. No. 87. |
[38] | Chacón León, M; Harvey, CA. 2008. Contribución de las cercas vivas a la estructura y la conectividad de un paisaje fragmentado en Rio Frio, Costa Rica. In A, HC; C., SJ (eds.). Evaluación y conservación de la biodiversidad en paisajes fragmentados de Mesoamérica. Heredia, Costa Rica. p. 225-248. |
[39] | Camargo, J. C; Ibrahim, M; Somarriba, E; Finegan, B; Current, D. 2000. Factores ecológicos y socioeconómicos que influyen en la regeneración natural de laurel en sistemas silvopastoriles del trópico húmedo y subhúmedo de Costa Rica. Agroforestería en las Américas. 7 (26): 46-49. |
[40] | Bautista-Tolentino, M; López-Ortíz, S; Pérez-Hernández, P; Vargas-Mendoza, M; Gallardo-Lopez, F; Gómez-Merino, FC. 2011. Agro and Silvopastoral system in the community El Limón, Paso de Ovejas, Veracruz, México. Tropical and Subtropical Agroecosystem. 14:63-76 |
[41] | León, P. 2010. Analysis of forest financing in Guatemala. Ciudad Guatemala, Guatemala. Consulted 20 Ago.2018. Retrieved from http://www.un.org/esa/forests/pdf/aheg/aheg1/Guatemala_case_study.pdf |
[42] | Instituto Nacional de Bosques (INAB). 2017. Reglamento de la ley de fomento al establecimiento, recuperación, restauración, manejo, producción y protección de bosques en Guatemala. Diario de Centro América, Guatemala, Guatemala; 25 ago.:86. |
[43] | Villanueva, C; Tobar, D; Ibrahim, M; Casasola, F; Barrantes, J; Arguedas, R. 2006. Arboles dispersos en potreros en fincas ganaderas del Pacifico Central de Costa Rica. Agroforestería en las Américas 45:1-9. |
[44] | Ramírez, IAB. 2012. Efecto de la cobertura arbórea sobre el movimiento, comportamiento y preferencia de árboles por vacas lecheras en Rivas, Nicaragua. Tesis Msc. Turrialba, Costa Rica, CATIE. 62 p. |
[45] | García, FC; Ibrahim, M. 2013. Los árboles en los potreros para la reducción del estrés calórico del ganado en los trópicos. In Sánchez, d; Villanueva, C; Rusch, GM; Ibrahim, M; DeClerck, F (eds.). Estado del recurso arbóreo en fincas ganaderas y su contribución en la sostenibilidad de la producción en Rivas, Nicaragua. Turrialba, Costa Rica. p. 36-41. |
APA Style
Jennifer Solis, Cristóbal Villanueva, Guillermo Detlefsen, Christian Brenes, Sergio Vilchez. (2019). Tree Cover on Cattle Farms in the Southeast Region of Guatemala. American Journal of Agriculture and Forestry, 7(2), 66-77. https://doi.org/10.11648/j.ajaf.20190702.14
ACS Style
Jennifer Solis; Cristóbal Villanueva; Guillermo Detlefsen; Christian Brenes; Sergio Vilchez. Tree Cover on Cattle Farms in the Southeast Region of Guatemala. Am. J. Agric. For. 2019, 7(2), 66-77. doi: 10.11648/j.ajaf.20190702.14
AMA Style
Jennifer Solis, Cristóbal Villanueva, Guillermo Detlefsen, Christian Brenes, Sergio Vilchez. Tree Cover on Cattle Farms in the Southeast Region of Guatemala. Am J Agric For. 2019;7(2):66-77. doi: 10.11648/j.ajaf.20190702.14
@article{10.11648/j.ajaf.20190702.14, author = {Jennifer Solis and Cristóbal Villanueva and Guillermo Detlefsen and Christian Brenes and Sergio Vilchez}, title = {Tree Cover on Cattle Farms in the Southeast Region of Guatemala}, journal = {American Journal of Agriculture and Forestry}, volume = {7}, number = {2}, pages = {66-77}, doi = {10.11648/j.ajaf.20190702.14}, url = {https://doi.org/10.11648/j.ajaf.20190702.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajaf.20190702.14}, abstract = {Often livestock activity is related to deforestation and loss of natural resources such as soil and water quality and quantity. The strategies that come from this perception seek the minimization of livestock effect of greenhouse gas emissions into the environment. Silvopastoral systems is been used as an alternative to increase tree cover on livestock farms, mitigate the effects of climate change, and make farmers more resilient to these. Tree cover plays an important role inside of this system, they can help with the optimization of the land use on the farm and it provides socioeconomical and environmental benefits to the farmers. Therefore, the objective of this study was to characterize livestock farms and the floristic composition of tree cover in the southeast region of Guatemala. This region belongs to the dry corridor of Central America and present high vulnerability to drought. Thirty farms were selected using seven criteria, on each farms a socioeconomical survey was applied to recollect biophysical, socioeconomical and productive information. Two groups of farms were identified: 1) farms with high level technological innovation (HLTI) and 2) farms with low level of technological innovation (LLTI). Tree data were obtained from individuals with diameter above breast height (DBH) of >5 cm. Composition, richness and abundance of tree species were evaluated using Q-Hill Diversity Index. Seven land uses were identified: scattered trees in paddocks, natural forest, agrisilvicultural systems, fodder banks, forest plantations, riparian forest and living fences. Study area were 790 ha in which there were 143 plots distributed randomly, living fences were present in 1.691 km (169.1 ha) with 44 transects. A total of 4,678 trees, from 37 families and 83 species, were found in the area. The most abundant families were Fabaceae and Pinaceae. The most common tree species for timber were Pinus spp and Quercus spp and for non-timber were Gliricidia sepium and Acacia pennatula. It was found that 77.27% of the total inventory is dominated by ten species. We conclude that farmers consider tree cover of importance, this is reflected in the 29% of tree cover found inside of natural forests, 26.2% in scattered trees in paddocks and 7.9% in forest plantations. There were marked differences of richness by individuals, density of species accumulated by land use and diametrical class.}, year = {2019} }
TY - JOUR T1 - Tree Cover on Cattle Farms in the Southeast Region of Guatemala AU - Jennifer Solis AU - Cristóbal Villanueva AU - Guillermo Detlefsen AU - Christian Brenes AU - Sergio Vilchez Y1 - 2019/05/07 PY - 2019 N1 - https://doi.org/10.11648/j.ajaf.20190702.14 DO - 10.11648/j.ajaf.20190702.14 T2 - American Journal of Agriculture and Forestry JF - American Journal of Agriculture and Forestry JO - American Journal of Agriculture and Forestry SP - 66 EP - 77 PB - Science Publishing Group SN - 2330-8591 UR - https://doi.org/10.11648/j.ajaf.20190702.14 AB - Often livestock activity is related to deforestation and loss of natural resources such as soil and water quality and quantity. The strategies that come from this perception seek the minimization of livestock effect of greenhouse gas emissions into the environment. Silvopastoral systems is been used as an alternative to increase tree cover on livestock farms, mitigate the effects of climate change, and make farmers more resilient to these. Tree cover plays an important role inside of this system, they can help with the optimization of the land use on the farm and it provides socioeconomical and environmental benefits to the farmers. Therefore, the objective of this study was to characterize livestock farms and the floristic composition of tree cover in the southeast region of Guatemala. This region belongs to the dry corridor of Central America and present high vulnerability to drought. Thirty farms were selected using seven criteria, on each farms a socioeconomical survey was applied to recollect biophysical, socioeconomical and productive information. Two groups of farms were identified: 1) farms with high level technological innovation (HLTI) and 2) farms with low level of technological innovation (LLTI). Tree data were obtained from individuals with diameter above breast height (DBH) of >5 cm. Composition, richness and abundance of tree species were evaluated using Q-Hill Diversity Index. Seven land uses were identified: scattered trees in paddocks, natural forest, agrisilvicultural systems, fodder banks, forest plantations, riparian forest and living fences. Study area were 790 ha in which there were 143 plots distributed randomly, living fences were present in 1.691 km (169.1 ha) with 44 transects. A total of 4,678 trees, from 37 families and 83 species, were found in the area. The most abundant families were Fabaceae and Pinaceae. The most common tree species for timber were Pinus spp and Quercus spp and for non-timber were Gliricidia sepium and Acacia pennatula. It was found that 77.27% of the total inventory is dominated by ten species. We conclude that farmers consider tree cover of importance, this is reflected in the 29% of tree cover found inside of natural forests, 26.2% in scattered trees in paddocks and 7.9% in forest plantations. There were marked differences of richness by individuals, density of species accumulated by land use and diametrical class. VL - 7 IS - 2 ER -